首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the shortage of global fossil energy and the increasing crisis of environmental deterioration, hydrogen energy has become an environmentally benign alternative as a clean energy source. In most studies on photocatalytic hydrogen production, novel photocatalytic material has played an important role to enhance the hydrogen production rate. In this study, the optimal conditions for the synthesis of MoS2 were established through series of characterizations with 190 °C calcination temperature and 1 wt% PEG surfactant addition. The best conditions for synthesizing MOF include copper nitrate as the copper precursor, 30% ultrasonic amplitude, and 240 °C calcination temperature. After adding 1 wt% MOF in MOS2, a flower-like structure with small particle size, uniform distribution, regularity, and large surface pores, has been formed, where its unit is modified with many rough, porous, and high specific surface area octahedral structures. In addition, 1MOF/MOS2 has the most negative conduction band edge (?0.135 V), the smallest charge transfer resistance (Rct = 1.78 Ω), the largest photo current (11.1 mA/cm2), the lowest PL spectral peak intensity, and excellent photocatalytic stability. The above morphological features and optical properties can significantly form more active sites, enhance the electron transfer rate, and inhibit the electron-hole recombination, thus making the MOF/MOS2 composite photocatalyst achieve the maximum hydrogen production capacity (626.3 μmol g?1 h?1).  相似文献   

2.
Integrating MoS2 with carbon-based materials, especially graphene, is an effective strategy for preparing highly active non-noble-metal electrocatalysts in the hydrogen evolution reaction (HER). This work demonstrates a convenient hydrothermal method to fabricate molybdenum disulfide nanosheets/nitrogen-doped reduced graphene oxide (MoS2/NGO) hybrids using polyoxomolybdate as the Mo precursor. Introducing more defects and expanding interlayer spacing of MoS2 can be achieved through decreasing the pH value of the reactive system due to the existed high-nuclear polyoxometalate clusters. MoS2/NGO hybrids prepared at low pH exhibit superior HER activity to those obtained at high pH. MoS2/NGO-pH1.5 exhibits an ultralow overpotential of 81 mV at 10 mA cm−2, a low Tafel slope of 60 mV·dec−1 and good stability in alkaline electrolyte. Such excellent electrocatalytic activity is contributed by the abundant HER catalytic active sites, the increased electrochemically-accessible area and the synergetic effects between the active MoS2 catalyst and NGO support.  相似文献   

3.
This study demonstrates a high-performance visible-light-driven photocatalyst for water splitting H2 production. CdS nanorods (30 nm in diameters) with shorter radial transfer paths and fewer defects were prepared by a solvothermal method. To mitigate the recombination of electrons and holes, MoS2 nanosheets with rich active sites were modified on the surface of CdS nanorods by a room-temperature sonication treatment. The photocatalytic water splitting tests show that the MoS2/CdS nanocomposites exhibit excellent H2 evolution rates. The highest H2 evolution rates (63.71 and 71.24 mmol g?1h?1 in visible light and simulated solar light irradiation) was found at the 6% MoS2/CdS nanocomposites, which was 14.61 times and 13.39 times higher than those of the corresponding pristine CdS nanorods in visible light and simulate solar light irradiation, respectively. The apparent quantum efficiency (AQE) of the 6% MoS2/CdS nanocomposites at 420 nm was calculated to be 33.62%. The electrochemistry tests reveal that the enhanced photocatalytic activity is a result of extra photogenerated charge carries, greatly enhanced charge separation and transfer ability of the MoS2/CdS composites. This study may give new insights for the rational design and facile synthesis of high-performance and cost-effective bimetallic sulfide photocatalysts for solar-hydrogen energy conversion.  相似文献   

4.
Photocatalytic water splitting plays a challenging role as it is one of the most important reactions for solving energy, environmental problems and sustainability. Photocatalytic water splitting was improved by using a novel kind of magnetically separable core shell nano photocatalyst TiO2/Fe2O3, prepared by co-precipitation method. It was characterised for particle size (XRD), band gap (UV-DRS), morphology (SEM), particle size (HRTEM), elemental composition (EDS) and electrochemical studies. Photocatalytic splitting of water was examined in tubular reactor of 500 mL capacity with various sacrificial agents viz., methanol, ethanol, acetic acid, lactic acid, EDTA and triethanolamine. To enhance the hydrogen production, various operating parameters viz., effect of sacrificial agents, catalytic dosage, light irradiation and recycle flow rate were optimized. With the optimized operating parameters (0.2 g catalyst dosage, 60 mL/min recycle flow rate, 96 W/m2 light irradiation and EDTA as sacrificial agent) the maximum hydrogen achieved was 2700 μmol/h for the quantum yield of 3.86% at 550 nm. The reusability studies were conducted and the TiO2 coated Fe2O3 core shell particles were found to be stable than the plain TiO2 nano particles. Effective charge transfer from TiO2 to Fe2O3 and the suppression of e?/h+ pair recombination attributed significant enhancement in photoactivity, thereby increasing the hydrogen production.  相似文献   

5.
In an attempt to construct efficient and robust photocatalysts/systems for solar H2 evolution from water splitting, the development of highly active and stable H2 evolution cocatalysts is crucial yet remains a great challenge. Herein, we present that vanadium carbide (VC) can serve as an efficient cocatalyst when integrated with TiO2 for photocatalytic H2 evolution. With 15 wt% VC, the obtained TiO2/VC (15 wt%) composite photocatalyst (denoted as TV15) shows the highest photocatalytic H2 evolution rate of 521.4 μmol h−1 g−1, while the pristine TiO2 hardly shows H2 evolution activity. The apparent quantum efficiency (AQE) of H2 evolution reaches up to 2.3% under light irradiation of 365 nm. Notably, the TV15 exhibits excellent photocatalytic stability for H2 evolution over four cycles of continuous light irradiation of 20 h. The enhanced activity of TV15 can be attributed to the cocatalyst effects of VC, which can not only effectively capture the photogenerated electrons of TiO2 to greatly enhance the charge separation efficiency but also significantly reduce the overpotential of H2 evolution reaction, thus enhancing the photocatalytic activity of TiO2/VC towards H2 evolution. This work provides a new insight to rationally design and develop efficient photocatalysts using active and stable transition metal carbides as cocatalysts.  相似文献   

6.
As an emerging two-dimensional (2D) nanomaterial, 2D MoSe2 nanosheets has the advantages of wide light response and rapid charge migration ability. In this work, 2D MoSe2/TiO2 nanocomposites were successfully synthesized through a simple hydrothermal method. The microstructure and photocatalytic activity of the nanocomposites were systematically investigated and determined. The corresponding Raman peaks and crystal planes of MoSe2 were analysed by Raman spectroscopy and transmission electron microscopy respectively, demonstrating the successful combination of the MoSe2 nanosheets and TiO2 nanoparticles. UV-vis diffused reflectance spectra demonstrated that the introduction of MoSe2 did increase the light absorption ability of the nanocomposites. A lower recombination of electrons and holes was demonstrated for the MoSe2/TiO2 heterojunction from photoluminescence results. The photocatalytic hydrogen evolution test showed that the hydrogen production rate was 4.9 μmol h−1 for the sample with 0.1 wt.% MoSe2, 2 times higher than that of bare TiO2. This work provides a novel strategy for improving the photocatalytic properties of semiconductor photocatalyst.  相似文献   

7.
Envisaging headway in the applicability of sustainable H2 energy, the novel report of the fabrication of MoS2-BN/TiO2 (MBT) heterogeneous nanostructures has been proposed via facile in-situ hydrothermal route with an aim to propound the superior substitute of noble metal based conventionally employed catalytic system to surmount their exorbitant cost. We inferred the ascendancy of MoS2-BN nanoflowers over pristine MoS2 counterpart in an establishment of TiO2 based heterostructured catalysis. MBT heterostrucutres were extensively scrutinized with respect to their structural, optoelectronic and computational characteristics. En route to enhanced H2 evolution, we have investigated the significance of interfacial junctions and exposed sites in the MBT heterostructures. In order to achieve broader pertinence in green H2 fuel, the performance of MBT heterostrucutres was ascertained with subject to photochemical, electrochemical and photo-electrochemical (PEC) water splitting. Loaded concentration of MoS2-BN was varied in MBT catalysts and 2.5 wt% MoS2-BN/TiO2 exhibited optimum photocatalytic response with an H2 production rate of 2.6 mmol/g/h with 6.94% AQY and improved photo-current response of 0.99 mA/cm2 towards PEC. Electrochemical investigations further intensified the caliber of MBT as HER catalyst ascribed to the higher cathodic current density of 49.23 mA/cm2 at 1.22 V potential. The advancement in the catalytic efficiency of MBT heterostructures was evidenced by the synergetic relationship between MoS2-BN and TiO2 which stimulated the separation and transfer of photo-charged carriers, and lowered the overpotential values consequently surging the kinetics of H2 evolution.  相似文献   

8.
Recently, the replacement of expensive platinum-based catalytic materials with non-precious metal materials to electrolyze water for hydrogen separation has attracted much attention. In this work, Ni0.85Se, MoS2 and their composite Ni0.85Se/MoS2 with different mole ratios are prepared successfully, as electrocatalysts to catalyze the hydrogen evolution reaction (HER) in water splitting. The result shows that MoS2/Ni0.85Se with a molar ratio of Mo/Ni = 30 (denoted as M30) has the best catalytic performance towards HER, with the lowest overpotential of 118 mV at 10 mA cm−2, smallest Tafel slope of 49 mV·dec−1 among all the synthesized materials. Long-term electrochemical testing shows that M30 has good stability for HER over at least 30 h. These results maybe due to the large electrochemical active surface area and high conductivity. This work shows that transition metal selenides and sulfides can form effective electrocatalyst for HER.  相似文献   

9.
In this study, TiO2 coated carbon fiber (TiO2@CF) was synthesized and used for the improvement of hydrogen (H2) evolution. Obtained results from scanning electron microscopy (SEM), X-ray diffraction (XRD), gas adsorption analysis (BET), UV–vis diffuse (UV–vis), and X-ray photoelectron spectroscopy (XPS) confirmed that the surface area and light absorption of the material was significantly improved. The synthesized TiO2@CF photocatalyst exhibited improved photocatalytic performance toward hydrogen generation. The enhancement of photocatalytic H2 evolution capacity by TiO2@CF was ascribed to its narrowed bandgap energy (2.76eV) and minimized recombination of photogenerated electron-hole pairs The hydrogen production rate by the TiO2@CF reached 3.238 mmolg?1h?1, which was 4.8 times higher than unmodified TiO2 (0.674 mmolg?1h?1). The synthesized TiO2@CF was relatively stable with no distinct reduction in photocatalytic activity after five recycling runs. The photoluminescence and photocurrent were employed to support the photocatalytic H2 production mechanism proposed mechanism.Based on these results, TiO2@CF with unique properties, easy handle, and high reusability could be suggested as an efficient strategy to develop a high-performance photocatalyst for H2 production.  相似文献   

10.
Reasonable design of efficient and stable catalysts with low cost and abundant natural reserves is vital for electrocatalytic water splitting. Herein, novel nanotremella-like Bi2S3/MoS2 composites with different mass ratios between Bi2S3 and MoS2 have been successfully prepared through a hydrothermal approach and further applied to hydrogen evolution reaction (HER) in 1.0 M KOH electrolyte for the first time. When the mass ratio of Bi2S3 and MoS2 is 5:5, as-prepared nanotremella-like Bi2S3/MoS2 (marked as BMS-5) manifests favorable HER catalytic activity with overpotential of 124 mV at current density of 10 mA cm−2 and relatively low Tafel slope of 123 mV dec−1. Moreover, it exhibits an extraordinary durability for uninterrupted hydrogen generation. The enhanced HER performances are ascribed to the synergistic effects between Bi2S3 and MoS2, giving rise to large electrocatalytic active area and fast HER kinetics. The results pave a new path to design and construct excellent Bi2S3/MoS2 nanomaterials for electrocatalytic hydrogen generation.  相似文献   

11.
By using TiO2 and Ta2O5 colloids, a stable and efficient visible-light driven photocatalyst, Er3+:Y3Al5O12/TiO2Ta2O5/MoO2 composite membrane, was successfully prepared via sol–gel dip coating method at room temperature. The XRD, FTIR, SEM, TEM and EDX results confirm that approximately spherical Er3+:Y3Al5O12 nanoparticles were embedded in TiO2Ta2O5 matrix. UV–vis absorption and PL spectra of Er3+:Y3Al5O12 were also determined to confirm the visible absorption and ultraviolet emission. The photocatalytic hydrogen generation was carried out by using methanol as sacrificial reagent in aqueous solution under visible-light irradiation. Furthermore, some main influence factors such as heat-treated temperature, heat-treated time and molar ratio of TiO2 and Ta2O5 on visible-light photocatalytic hydrogen generation activity of Er3+:Y3Al5O12/TiO2Ta2O5/MoO2 composite membrane were studied in detail. The experimental results showed that the photocatalytic hydrogen generation activity of Er3+:Y3Al5O12/TiO2Ta2O5/MoO2 composite membrane heat-treated at 550 °C for 3.0 h was highest when the molar ratio of TiO2 and Ta2O5 was adopted as 1.00:0.50. And that a high level photocatalytic activity can be still maintained after four cycles. In addition, a possible mechanism for the visible-light photocatalytic hydrogen generation of the Er3+:Y3Al5O12/TiO2Ta2O5/MoO2 membrane was proposed based on PL spectra.  相似文献   

12.
We report the synthesis of TiO2 hierarchical spheres (THS) with large specific surface area via a facile one-pot solvothermal method. The as-prepared THS are self-assembled by ultrathin TiO2 nanosheets with thickness of several nanometers and they show a uniform spherical morphology with an average size of 500–700 nm. However, the as-prepared light yellow THS exhibit inferior photocatalytic activity for hydrogen evolution from water splitting due to the poor crystallization of TiO2 and the existence of oxygen vacancies. Significantly, a subsequent thermal treatment improves the crystallinity of THS, reduces the oxygen vacancies, and thereby enhances the photocatalytic performance. It demonstrates that the sample annealed at 550 °C (THS550) exhibits the highest photocatalytic activity, about 5 times higher than that of commercial TiO2 nanoparticles (CTiO2). Moreover, the THS550 sample loaded with 1 wt% Pt exhibits an hydrogen evolution rate as high as 17.9 mmol h?1g?1, and the corresponding apparent quantum efficiency has been determined to be 28.46% under 350 nm light irradiation.  相似文献   

13.
TiO2 photocatalysts loaded CuS and NiS as co-catalyst were prepared by hydrothermal approach and characterized by XRD, UV–visible DRS, BET, XPS, SEM and TEM. When TiO2 was loaded MS as co-catalyst, it showed higher photocatalytic activities for splitting water into hydrogen in methanol aqueous solution under 500 W Xe lamp. Among the photocatalysts with various compositions, the maximum evolution of H2 obtained from 5 wt% CuS5 wt% NiSTiO2 sample was about 800 μmol h−1, which was increased up to about twenty-eight times than that of TiO2 alone. It was proven that CuS, NiS can act as effective dual co-catalysts to enhance the photocatalytic H2 production activity of TiO2.  相似文献   

14.
The reduction of active sites due to reunion and slow electron transfer rates and low electronegativity greatly reduced the catalytic performance of many two-dimensional materials. In this paper, we synthesized composites for partially reducing graphene oxide and molybdenum disulfide (MoS2@prGO) by one-step hydrothermal method. With the addition of triethanolamine, MoS2 is highly dispersed on the prGO carrier and converted into the 1T phase MoS2 (50.4%). Meanwhile, it helps to increase the electron transfer rate of the MoS2@prGO composites. MoS2@prGO composites presents a high electron cloud density due to the existence of N atoms and prGO, which promotes the occurrence of hydrogen ion conversion hydrogen reaction and decreases the electrocatalytic hydrogen evolution overpotential. MoS2@prGO composites exhibits an overpotential of 263 mV at 10 mA/cm2 and a small Tafel slope of 60 mV/dec. This work is devoted to offer a new prospect and direction for the improvement of electrochemical HER performance.  相似文献   

15.
The nanocomposite material C@Pt/MoS2@CdS was prepared by a simple microwave-assisted hydrothermal method combined with photoreduction method. The crystal structure, microstructure, and surface physical chemistry properties of the material were analyzed by X-ray diffraction (XRD), ultraviolet–visible diffuse reflectance absorption spectroscopy (UV–vis/DRS), X-ray photoelectron energy spectroscopy (XPS), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM), nitrogen adsorption–desorption measurement, photoluminescence spectroscopy (PL), and electrochemical tests. As a result, this material has full-spectrum light absorption property and the composited CdS presents a good hexagonal phase. Moreover, the composite material presents a nanorod-like multi-layer core-shell structure, wherein the rod-like MoS2@CdS surface is covered with Pt and C. The formation of the multi-layer core-shell structure increases the specific surface area of as-composite material and strengthens its light absorption performance. The electrochemical impedance and transient photocurrent test results show that C@Pt/MoS2@CdS has the highest charge separation efficiency and enhanced photocurrent density compared with other systems. Photogenerated charge carriers have higher separation efficiency, and photogenerated electrons and holes exhibit longer life. During the photocatalysis experiments, the nanocomposite C@Pt/MoS2@CdS shows enhanced photodegradation activity under multi-modal photocatalytic experiments and excellent stability under visible light irradiation. In addition, C@Pt/MoS2@CdS has a strong photocatalytic water splitting ability. Under the same experimental conditions, its hydrogen production is 60 times that of commercially available P25. Through capture experiments, the reactive species in the photocatalytic reaction process were determined, and the possible photocatalytic reaction mechanism of this multi-layer core-shell C@Pt/MoS2@CdS nanocomposite was inferred.  相似文献   

16.
In this study, graphene/g-C3N4 in-plane heterojunctions (SGCN-x) with D-π-A structure are prepared by hydrothermal and pyrolysis carbonization methods. The interfacial bonded hydrothermal precursor can assist the synthesis of graphite carbon and g-C3N4 at mild thermodynamic conditions. The characterizations indicated that graphene was stitched onto the edge of carbon nitride. The interface of the in-plane heterojunction is carbon-nitrogen heterocyclic rings with π conjugate property, which can be regarded as the transmission channel of electrons. That is, the separation/transport of photocarriers in SGCN-x heterostructure is accelerated, and the recombination time of photogenerated electrons and holes is prolonged. The highest yield of hydrogen production performance has reached up to 7446 μmol/(g·h) for the optimization of the photocatalyst, almost 6.73 times higher compared with pure g-C3N4. This work opens new opportunities for the significant strategy for the in-situ preparation of graphene-based materials and construction of efficient photoactive material for catalysis.  相似文献   

17.
This study focused on the large band gap of TiO2 for its use as a photocatalyst under light emitting diode (LED) light irradiation. The photocatalytic activities of core–shell structured Au@TiO2 nanoparticles (NPs), nitrogen doped Au@TiO2 NPs, and Au@TiO2/rGO nanocomposites (NCs) were investigated under various light intensities and sacrificial reagents. All the materials showed better photocatalytic activity under white LED light irradiation than under blue LED light. The N-doped core–shell structured Au@TiO2 NPs (Au@N–TiO2) and Au@TiO2/rGO NCs showed enhanced photocatalytic activity with an average H2 evolution rate of 9205 μmol h?1g?1 and 9815 μmol h?1g?1, respectively. All these materials showed an increasing rate of hydrogen evolution with increasing light intensity and catalyst loading. In addition, methanol was more suitable as a sacrificial reagent than lactic acid. The rate of hydrogen evolution increased with increasing methanol concentration up to 25% in DI water and decreased at higher concentrations. Overall, Au@TiO2 core–shell-based nanocomposites can be used as an improved photocatalyst in photocatalytic hydrogen production.  相似文献   

18.
Water splitting on single Fe atom catalyst anchored on defective graphene surfaces by using first-principles density functional theory. The structure and electronic features of isolated Fe atom anchored on three graphene surfaces with single vacancy (SV), double vacancy (DV) and Stone-Wales structure (SW) defect were systematically explored. The three structures prove to be high activity and high stability on catalytic. The adsorption and the energy barrier of water splitting as well as hydrogen adsorption free energy ΔGH1 on single-atom Fe were also studied. The sequence of promoted splitting activity is found to be Fe@SW > Fe@DV > Fe@SV. Furthermore, by hydrogen adsorption free energy ΔGH1 analysis, we predict that the HER catalytic activity of graphene nanosheet can be improved by anchoring Fe atom on SV and DV structures, which are comparable to or even better than noble metals. It is found that the catalytic activity of water splitting and HER can be changed with the shift in d-band center with respect to Fermi-level. Detailed investigations on electronic structure of Fe@graphene catalytic systems disclose an obvious orbital hybridization coupling and charge transfer between atom Fe on carbon surfaces and water molecule. These results provide us with new insight into design of high performer and low-cost catalysts and may inspire potential applications in the fields of clean and renewable energy.  相似文献   

19.
Due to the extensive use of fossil fuels & their direct influence on the environment, new ways of producing energy sources are highly needed. Hydrogen is the perfect candidate for renewable energy; however, H2 gas production is associated with disadvantages due to a lack of efficient and active catalysts that could be cost-effective and comparable to platinum performance. Active hydrogen evolution reaction catalysts are needed to advance the development of a cheaper generation of solar fuels. Thus, outperformance, and stable earth abundant. And inexpensive catalysts are highly demanded. That is H2 gas production from the electrolysis of water through HER. In this work, we present different analytical techniques that characterize an efficient and highly stable catalyst based on transition metal oxide Co3O4/MoS2 nanostructures. And their composites for water splitting in harsh acidic conditions time and material chemical composition as like SEM, EDS, XRD, HRTEM & XPS. The composite material is highly best to produce HER at 10 mA cm?2 and obtained 268 mV overpotential of nano Co3O4/MoS2 (S3) and Tafel slope of 56 mv/dec. Faraday efficiencies of the hydrogen gas production measured for the 60 min and catalyst is highly durable for the 20 h. The presented catalysts are up to the mark of platinum metal performance and superior to several transition metal oxides. This fabrication technology is a new roadmap for developing active and scalable hydrogen-evolving catalysts by overcoming the issues of fewer catalytic edges, low density, and poor conductivity.  相似文献   

20.
Photocatalytic hydrogen production from water splitting is a promising approach to develop sustainable renewable energy resources and limits the global warming simultaneously. Despite the significant efforts have been dedicated for the synthesis of semiconductor materials, key challenge persists is lower quantum efficiency of a photocatalyst due to charge carrier recombination and inability of utilizing full spectrum of solar light irradiation. In this review, recent developments in binary semiconductor materials and their application for photocatalytic water splitting toward hydrogen production are systematically discoursed. In the main stream, fundamentals and thermodynamic for photocatalytic water splitting and selection of photo-catalysts has been presented. Developments in the binary photocatalysts and their efficiency enhancements though surface sensitization, surface plasmon resonance (SPR) effect, Schoktty barrier and electrons mediation toward enhanced hydrogen production has been deliberated. Different modification approaches including band engineering, coupling of semiconductor catalysts, construction of heterojunction, Z-scheme formation and step-type photocatalytic systems are also discussed. The binary semiconductor materials such as TiO2, g-C3N4, ZnO, ZnS, Fe2O3, CdS, WO3, rGO, V2O5 and AgX (Cl, Br and I) are systematically disclosed. In addition, role of sacrificial reagents for efficient photocatalysis through reforming and hole-scavenger are elaborated. Finally, future perspectives for photocatalytic water splitting towards renewable hydrogen production have been suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号