首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Considerable research is currently being devoted to seeking alternative fuels to comply with transportation needs while reducing the environmental impact of this sector. Within the transport activity sector, on road vehicles and agricultural machinery require around 2 Mtoe energy in France. The anaerobic digestion of farm waste could roughly cover these needs. This paper aims to study the environmental and energy interest of this short power supply path. An ideal biogas production system has been built up from the average characteristics of current rural biogas plants in France. Pollutant emissions, energy demands and production are assessed for various scenarios in order to produce methane for dual fuel engines. Life cycle assessment (LCA) is used to evaluate the environmental impact of dual fuel agricultural machines, compared to diesel engines. The energy balance is always in disfavour of biogas fuel, whereas LCA energy indicators indicate a benefit for biogas production. This gap is related to the way in which the input of biomass energy is handled: in conventional biofuel LCA, this energy is not taken into account. A carbon balance is then presented to discuss the impact of biogas on climate change. Dual fuel engines were found to be interesting for their small impact. We also show, however, how the biogenic carbon assumption and the choice of allocation for the avoided methane emissions of anaerobic digestion are crucial in quantifying CO2 savings. Other environmental issues of biogas fuel were examined. Results indicate that are management and green electricity are the key points for a sustainable biogas fuel. It is concluded that biofuel environmental damage is reduced if energy needs during biofuel production are covered by the production process itself. As agricultural equipment is used during the biofuel production process, this implies that a high substitution rate should be used for this equipment.  相似文献   

2.
The energy efficiency of different biogas systems, including single and co-digestion of multiple feedstock, different biogas utilization pathways, and waste-stream management strategies was evaluated. The input data were derived from assessment of existing biogas systems, present knowledge on anaerobic digestion process management and technologies for biogas system operating conditions in Germany. The energy balance was evaluated as Primary Energy Input to Output (PEIO) ratio, to assess the process energy efficiency, hence, the potential sustainability. Results indicate that the PEIO correspond to 10.5–64.0% and 34.1–55.0% for single feedstock digestion and feedstock co-digestion, respectively. Energy balance was assessed to be negative for feedstock transportation distances in excess of 22 km and 425 km for cattle manure and for Municipal Solid Waste, respectively, which defines the operational limits for respective feedstock transportation. Energy input was highly influenced by the characteristics of feedstock used. For example, agricultural waste, in most part, did not require pre-treatment. Energy crop feedstock required the respect cultivation energy inputs, and processing of industrial waste streams included energy-demanding pre-treatment processes to meet stipulated hygiene standards. Energy balance depended on biogas yield, the utilization efficiency, and energy value of intended fossil fuel substitution. For example, obtained results suggests that, whereas the upgrading of biogas to biomethane for injection into natural gas network potentially increased the primary energy input for biogas utilization by up to 100%; the energy efficiency of the biogas system improved by up to 65% when natural gas was substituted instead of electricity. It was also found that, system energy efficiency could be further enhanced by 5.1–6.1% through recovery of residual biogas from enclosed digestate storage units. Overall, this study provides bases for more detailed assessment of environmental compatibility of energy efficiency pathways in biogas production and utilization, including management of spent digestate.  相似文献   

3.
The mucilage, which emerged as a result of increasing global warming and the deterioration of marine ecosystem balances, has taken the Marmara Sea under its influence. Mucilage appears in some periods and there is not much information about its bioenergy production potential. In this study, the biogas and biohydrogen production potential was determined when mucilage collected from the coasts is used as a substrate. Different S/X ratios were evaluated for biogas production. The highest biogas production was observed as 682 ml/g VS at the S/X ratio of 2. Dark fermentation was carried out using mixed Clostridium sp. to produce biohydrogen. As a result of fermentation, a maximum biohydrogen yield of 117 ml H2/g VS hydrogen was obtained. In terms of both biogas and hydrogen results, the bioenergy potentials of the mucilage sample taken from the surface were determined to be higher than the bottom sediment.  相似文献   

4.
This study focused on identifying various system boundaries and evaluating methods of estimating energy performance of biogas production. First, the output–input ratio method used for evaluating energy performance from the system boundaries was reviewed. Secondly, ways to assess the efficiency of biogas use and parasitic energy demand were investigated. Thirdly, an approach for comparing biogas production to other energy production methods was evaluated. Data from an existing biogas plant, located in Finland, was used for the evaluation of the methods. The results indicate that calculating and comparing the output–input ratios (Rpr1, Rpr2, Rut, Rpl and Rsy) can be used in evaluating the performance of biogas production system. In addition, the parasitic energy demand calculations (w) and the efficiency of utilizing produced biogas (η) provide detailed information on energy performance of the biogas plant. Furthermore, Rf and energy output in relation to total solid mass of feedstock (FO/TS) are useful in comparing biogas production with other energy recovery technologies. As a conclusion it is essential for the comparability of biogas plants that their energy performance would be calculated in a more consistent manner in the future.  相似文献   

5.
Co-digestion in anaerobic fermentation has been widely used to improve biogas production. The biogas production from co-digestion of glucose and glycerol was studied in laboratory-scale batch reactors under mesophilic temperatures, pH 7. The batch experiments involved a variation of glycerol/glucose ratios with initial chemical oxygen demand (COD) for all conditions was fixed at 5,200 mg L−1. The highest yield of biogas production was obtained from glycerol/glucose with 5:5 ratio. The cumulative biogas production was 298.2 mL, and the maximum production rate was 8 mL hr−1. The findings suggested that co-digestion is a potential method to achieve glycerol waste treatment and energy recovery at the same time.  相似文献   

6.
Biohydrogen production from dairy wastewater with subsequent biogas purification by hollow fiber membrane module was investigated in this study. The purified and not purified (raw) biohydrogen were used as fuel in polymer electrolyte membrane (PEM) fuel cell. Furthermore, the effect of CO2 on the performance of PEM fuel cell was evaluated considering cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and polarization curves. The maximum H2 production rate was 0.015 mmol H2/mol glucose and the biohydrogen concentration in biogas was ranged 33%–60% (v/v). CO2/H2 selectivity decreased with increasing pressure and maximum selectivity was obtained as 4.4 at feed pressure of 1.5 bar. The electrochemical active surface (EASA) areas were decreased with increasing CO2 ratio. The maximum power densities were 0.2, 0.08 and 0.045 W cm−2 for 100%, 80% and 60% (v/v) H2, respectively. The results indicated that integrated PEM fuel cell/biogas purification system can be used as a potential clean energy sources during acidogenic biohydrogen production from dairy wastewater.  相似文献   

7.
The Biofuels Directive sets reference values for the quantity of biofuels and other renewable fuels to be placed on the transport market. Biogas from agricultural crops can be used to meet this directive. This paper investigates biogas production for three crop rotations: wheat, barley and sugar beet; wheat, wheat and sugar beet; wheat only. A technical and economic analysis for each crop rotation was carried out. It was found that wheat produces significantly more biogas than either barley or sugar beet, when examined on a weight basis. However sugar beet produces more biogas and subsequently more energy when examined on an area basis. When producing biofuels, land is the limiting factor to the quantity of energy that may be produced. Thus if optimising land then a crop rotation of wheat, wheat and sugar beet should be utilised, as this scenario produced the greatest quantity of energy. This scenario has a production cost of €0.90/mN3, therefore, this scenario is competitive with petrol when the price of petrol is at least €1.09/l (VAT is charged at 21%). If optimising the production costs then a crop rotation of wheat only should be utilised when the cost of grain is less than €132/ton. This scenario has the least production cost at €0.83/mN3, therefore, this scenario is competitive with petrol when the price of petrol is at least €1.00/l. But as this scenario produces the least quantity of biogas, it also produces the least quantity of energy. In comparing with other works by the authors it is shown that a biomethane system produces more energy from the same crops at a cheaper cost than an ethanol system.  相似文献   

8.
The dates production is usually accompanied by considerable loss of fruit byproducts. The chemical analysis showed that ‘Deglet Nour’ discarded flesh is rich in soluble sugars (79.8% ± 0.8%) and fibers (12.3% ± 0.4%). A processing approach was implemented to permit the production of biohydrogen from the flesh and biogas from the crude fiber fraction after soluble sugars extraction. This approach showed interesting results since the obtained biochemical hydrogen potential and the maximum methane yield were 292 mL H2/gVS initial and 235 mL CH4/gVS fibers respectively. Parallelly, the “hot water” soluble sugar fraction (date syrup) was of interest for agro-alimentary applications and showed a high sucrose, glucose and fructose content of 33.5%, 11.8% and 13.17% respectively. This study presents a proof of concept allowing an efficient sustainable energetic conversion of the date by-products biomass to biohydrogen via dark fermentation or to soluble sugars fraction and biogas via a biorefinery approach.  相似文献   

9.
Among the alternative pathways for hydrogen production, the use of biogas from organic waste via dry reforming of methane (DRM), water gas shift reaction and pressure swing adsorption (PSA) is often seen as an interesting option. In this work, the thermodynamic performance of this type of biohydrogen energy system –additionally including a combined-cycle scheme that satisfies the electricity and steam requirements of the process– is evaluated through exergy analysis. The main data needed for the analysis are acquired from a predictive simulation model implemented in Aspen Plus®. The system shows an exergetic efficiency of 55%, with the DRM and the power generation subsystems arising as the main sources of irreversibility. Furthermore, given the significant influence found for the PSA off-gas on the thermodynamic performance of the system, two alternative process configurations based on the use of this stream are evaluated. In this regard, full recirculation of the PSA off-gas to the DRM reactor is found to improve the system's exergetic performance.  相似文献   

10.
Biogas is a potentially important energy source that can be used for the production of heat, electricity and fuel. It can be produced at wastewater treatment plants, landfills, food and other industrial operations throughout the world. There is largely untapped potential in agricultural operations where animal waste is often land applied or otherwise disposal of without conversion to energy. According to the last agricultural census (2009) in Turkey; there are a total of 3,076,650 agricultural enterprises and approximately 70% of these enterprises are running livestock farming. 10,811,165 of total animal is cattle, 26,877,793 of total animal is small ruminant and 234,082,206 is poultry. The amount of wet waste of these animals is about 120,887,280 t. These wastes could be a major problem for enterprises and cannot be utilized properly. The best way to utilize waste is to produce biogas. In this study, biogas amount which will be obtained from animal waste was calculated for all provinces by using the number of livestock animals and also considering various criteria such as the rate of dry matter and availability. Animal origin waste map of Turkey was also produced with these calculated values. The biogas energy potential of Turkey was found to be 2,177,553,000 m3 (2.18 Gm3) by using the animal numbers in the last agricultural census (2009). The total biogas potential is originated from 68% cattle, 5% small ruminant and 27% poultry. Biogas energy equivalence of Turkey is approximately 49 PJ (1170.4 ktoe). When the prepared waste map is examined; provinces that have more than 1 GJ of biogas energy potential are found to be; Bolu, Bal?kesir, ?zmir, Sakarya, Konya, Manisa, Erzurum, Afyon, Kars and Ankara respectively.  相似文献   

11.
Lignocellulosic biomass is an abundant organic material that can be used for sustainable production of bioenergy and biofuels such as biogas (about 50–75% CH4 and 25–50% CO2). Out of all bioconversion technologies for biofuel and bioenergy production, anaerobic digestion (AD) is a most cost-effective bioconversion technology that has been implemented worldwide for commercial production of electricity, heat, and compressed natural gas (CNG) from organic materials. However, the utilization of lignocellulosic biomass for biogas production via anaerobic digestion has not been widely adopted because the complicated structure of the plant cell wall makes it resistant to microbial attack. Pretreatment of recalcitrant lignocellulosic biomass is essential to achieve high biogas yield in the AD process. A number of different pretreatment techniques involving physical, chemical, and biological approaches have been investigated over the past few decades, but there is no report that systematically compares the performance of these pretreatment methods for application on lignocellulosic biomass for biogas production. This paper reviews the methods that have been studied for pretreatment of lignocellulosic biomass for conversion to biogas. It describes the AD process, structural and compositional properties of lignocellulosic biomass, and various pretreatment techniques, including the pretreatment process, parameters, performance, and advantages vs. drawbacks. This paper concludes with the current status and future research perspectives of pretreatment.  相似文献   

12.
As fossil fuel prices increase and environmental concerns gain prominence, the development of alternative fuels from biomass has become more important. Biodiesel produced from microalgae is becoming an attractive alternative to share the role of petroleum. Currently it appears that the production of microalgal biodiesel is not economically viable in current environment because it costs more than conventional fuels. Therefore, a new concept is introduced in this article as an option to reduce the total production cost of microalgal biodiesel. The integration of biodiesel production system with methane production via anaerobic digestion is proved in improving the economics and sustainability of overall biodiesel stages. Anaerobic digestion of microalgae produces methane and further be converted to generate electricity. The generated electricity can surrogate the consumption of energy that require in microalgal cultivation, dewatering, extraction and transesterification process. From theoretical calculations, the electricity generated from methane is able to power all of the biodiesel production stages and will substantially reduce the cost of biodiesel production (33% reduction). The carbon emissions of biodiesel production systems are also reduced by approximately 75% when utilizing biogas electricity compared to when the electricity is otherwise purchased from the Victorian grid. The overall findings from this study indicate that the approach of digesting microalgal waste to produce biogas will make the production of biodiesel from algae more viable by reducing the overall cost of production per unit of biodiesel and hence enable biodiesel to be more competitive with existing fuels.  相似文献   

13.
The prospects for expanded utilization of biogas systems in German was analysed, by identifying the operational and policy factors affecting the complete chain of processes from implementation process for biogas plants, through to biogas production and utilization. It was found that the Renewable Energies Act (EEG) and energy tax reliefs provide bases for the support of expanded utilization. Upgrading of biogas to natural gas quality for utilization in the transportation sector was arguably the most promising technology that could support rapid utilization expansion. Sustainable deployment of biogas systems in light of the unstable feedstock prices and availability, and the need for subsidy-free operation in the long term requires; enhancement of feedstock flexibility and quality characteristics to maximise gas yield, and optimisation of the anaerobic digestion process management. Assessment of energy balance and potential environmental impacts of the integrated process chain provides a holistic assessment of sustainability. The results also support the development and foster of policies and framework for development of biogas as environmentally friendly energy resource, among a mix of renewable energy sources, hence, compete favourably with fossil fuels to enhance the prospects for expanded utilization.  相似文献   

14.
The production of biogas has been a substantial target to be utilized globally, especially in the agricultural sector. Most organic waste that is being produced from other forms of renewable energy systems is mainly used to reduce greenhouse emission (GHG), which as well reduces the daily consumption of fossil fuels. Anaerobic Digestion (AD) has been studied widely in recent years where its implementation in the industry has seen a mitigating impact on greenhouse gases. Unrestricted discharge of the big amount of waste food (WF) has become the main effect of severe environmental pollution worldwide. Among the various treatment methods, anaerobic digestion (AD) of waste food allows its valorization and the biogas produced can be used as biofuel enhancing the gas supply. In this study, a mechanical pre-treatment with Hollander beater has been applied to break down the particle size of waste food in the way to increase feedstock specific surface areas in other to enhance biogas production. Following, the pre-treatment of waste food during 30 min beating time, the biogas yield achieved a value of about 610.33 ml/gTS. Accordingly, a response surface methodology (RSM) can be used to critically evaluate the effects of process parameter (beating time and temperature) to the output response (biogas production). Pre-treated waste food by Hollander beater at beating time of 30 min enhances biogas production by 80%. An optimum biogas yield was achieved with pre-treatment of waste food at a beating time of 30 min.  相似文献   

15.
This study is conducted to determine the potential for producing both biogas and hydrogen from a milk-processing waste water in Turkey. The results of this study indicate that a maximum of 54.2 million m3 biogas/yr and 12,670 ton H2/yr can be produced from milk-processing waste water. A total of $15.1 million worth of energy may be supplied every year from the produced biogas. Some Reference calculations for the production of biogas and the economic evaluation are carried out using actual data taken from the plant. Overall hydrogen production energy efficiency for different types of reforming and for different ambient temperatures ranges between 19 and 70% whereas the overall exergy efficiency for 900 °C reforming and different ambient temperatures changes between 8 and 48%, respectively.  相似文献   

16.
This study evaluates the influence of metal and metal-oxide nanoparticles (NPs) on biogas production from green microalgae Enteromorpha. The concentration of metallic NPs (Ni, Co) was 1 mg/L and oxides NPs (Fe3O4, MgO) was 10 mg/L. An anaerobic digestion was carried out batch-wise with working volume, operating temperature, mixing rate and hydraulic retention time as 500 ml, 37 °C, 150 rpm and 170 h, respectively. The measurements of chemical oxygen demand (COD), volatile fatty acids (VFAs), reducing sugar and biogas production were observed to monitor effectivity of nanoparticles. The results showed that NPs has moderate positive influence in biogas production until 60 h of retention time but significantly improve afterward. The maximum total biogas yield of 624 ml was achieved by Fe3O4 NPs whereas highest biohydrogen, 51.42% (v/v) was achieved by Ni NPs. The cumulative increase in biogas production for Fe3O4, Ni, Co and MgO NPs was 28%, 26%, 9% and 8%, respectively. A modified Gompertz and Logistic function model were used to determine kinetic constants of the reaction. The logistic model has the better predicting ability for microalgae anaerobic digestion.  相似文献   

17.
Pretreatment of biomass is a commonly applied technique for improving its biodegradability; however, such methods are energy intensive, which affects the overall efficiency. This study aims to provide an energy efficient solution by combining microwave (MW) pretreatment of algal biomass (Enteromorpha) and metal nanoparticles (NPs). The MW pretreatment of the biomass was in the form of a slurry (liquid:solid 20:1), while pretreatment time and MW pretreatment power were 6min and 600 W, respectively. Nickel (Ni) and Cobalt (Co) NPs with a concentration of 1 mg/L were used. Batch-wise anaerobic digestion was carried out for a period of 264 h. The results showed that MW pretreatment initiates early hydrolysis of green algae thus reducing lag time. NPs had a positive influence in biogas production at the later stages of anaerobic digestion. The highest total biogas production of 53.60ml/gTS was attained by Co NPs + MW pretreatment whereas maximum biohydrogen of 59.52% (v/v) was produced by Ni NPs + MW pretreatment group. Energy analysis showed that combined utilization of MW pretreatment and metal NPs produced added energy while consuming less input energy than MW pretreatment alone. The kinetic parameters were calculated by using modified Gompertz and Logistic function model for each experimental case.  相似文献   

18.
Energy decisions play an essential role in reducing greenhouse gas (GHG) emissions in the transportation sector. Biogas is a renewable energy source and can be used as an energy source for gas-operated cars or for electric cars. This paper compares different ways to use biogas, which is produced on a medium scale anaerobic digestion plants, as an energy source for transportation. The research is conducted from an economic and environmental point of view, and the option to deliver upgraded biogas via a natural gas grid is taken into account. Different processes for the use of biogas for transportation purposes are compared using life cycle assessment (LCA) methods in the Finnish operational environment. It seems that the most economical way is to use biogas in gas-operated cars due to the high price of methane for vehicle fuel use. A new feed-in tariff for electricity produced with biogas will, however, have highly positive economic effects on electricity production from biogas. From the environmental point of view, the highest CO2 reductions are gained when biogas is used in gas-operated cars or in CHP plants for power and heat production. During the transition stage, it might be reasonable to use biogas in gas-operated cars and most importantly in heavy vehicles to reduce GHG and local pollutants rapidly. If biogas production is located near a natural gas grid, the biogas can be delivered effectively via the natural gas grid. The use of biogas in gas-operated cars is an effective way to reduce carbon dioxide significantly in the transportation sector.  相似文献   

19.
Spectacular applications of anaerobic membrane bioreactors (AnMBRs) are emerging due to the membrane enhanced biogas production in the form of renewable bioresources. They produce similar energy derived from the world's depleting natural fossil energy sources while minimizing greenhouse gas (GHG) emissions. During the last decade, many types of AnMBRs have been developed and applied so as to make biogas technology practical and economically viable. Referring to both conventional and advanced configurations, this review presents a comprehensive summary of AnMBRs for biogas production in recent years. The potential of biogas production from AnMBRs cannot be fully exploited, since certain constraints still remain and these cause low methane yield. This paper addresses a detailed assessment on the potential challenges that AnMBRs are encountering, with a major focus on many inhibitory substances and operational dilemmas. The aim is to provide a solid platform for advances in novel AnMBRs applications for optimized biogas production.  相似文献   

20.
Biogas upgrading to biomethane is a necessary process for biohydrogen production from renewable source. In this work, absorption processes using water and diethanolamine (DEA) as absorbent were modeled in Aspen Plus software. The purpose was to find the optimal operating condition for sustainable production of biomethane using multi-criteria perspective considering technical, environmental and economic aspects. The absorption system was modified by including one additional absorber unit for improving biogas upgrading efficiency. The performance of the biogas upgrading system was evaluated and compared in terms of methane recovery, methane content in biomethane, and energy consumption. Effects of operating conditions such as operating pressure in absorber, concentration, and total flow rate of absorbents were investigated. The results revealed that the performance of the modified absorption system was superior to the conventional system. The methane content in biomethane, methane recovery, and energy consumption increased with the increase of operating pressure in the absorbers. Increasing concentration and total flow rate of absorbents increased the methane content in biomethane and the energy consumption but decreased the methane recovery. The optimal operating condition could achieve 96%v/v of methane content in biomethane with methane recovery of higher than 95%v/v in the modified water absorption system. The optimum operating pressures of absorber Units 1 and 2, and total absorbent flow rates were at 13 and 5 bar and 16,000 kmol/h, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号