首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A numerical study about in-plane porosity and contact angle gradient effects of cathode gas diffusion layer (GDL) on polymer electrolyte membrane fuel cell (PEMFC) under low humidity condition below 50% relative humidity is performed in this work. Firstly, a numerical model for a fuel cell is developed, which considers mass transfer, electrochemical reaction, and water saturation in cathode GDL. For water saturation in cathode GDL, porosity and contact angle of GDL are also considered in developing the model. Secondly, current density distribution in PEMFC with uniform cathode GDL is scrutinized to design the gradient cathode GDL. Finally, current density distributions in PEMFC with gradient cathode GDL and uniform cathode GDL are compared. At the gas inlet side, the current density is higher in GDL with a gradient than GDL with high porosity and large contact angle. At the outlet side, the current density is higher in GDL with a gradient than GDL with low porosity and small contact angle. As a result, gradient cathode GDL increases the maximum power by 9% than GDL with low porosity and small contact angle. Moreover, gradient cathode GDL uniformizes the current density distribution by 4% than GDL with high porosity and large contact angle.  相似文献   

2.
Proton exchange membrane fuel cell (PEMFC) gas diffusion layers (GDLs) play important parts in diffusing gas, discharging liquid water, and conducting electricity, etc. When liquid water is discharged through GDL to gas channel, there will be some pores of GDLs occupied by liquid water. In this study, based on a one-dimensional model, the distribution of liquid water phase saturation is analyzed for different GDL structures including GDL with uniform porosity, GDL with sudden change porosity (GDL with microporous layer (MPL)) and GDL with gradient porosity distribution. The effect on gas diffusion of the changes of porosity and liquid saturation due to water remaining in GDL pores is calculated. The conclusions are that for uniform porosity GDL, the gas diffusion increases with the increase of porosity and contact angle and increases with the decrease of the thickness of GDL; for GDL with MPL, the larger the MPL porosity and the thinner the MPL thickness are, the stronger the gas diffusion is; for gradient change porosity GDL with the same average equivalent porosity, the larger the porosity gradient is, the more easily the gas diffuses. The optimization for GDL gradient structure shows that the GDL with a linear porosity distribution of 0.4x+0.40.4x+0.4 is the best of the computed cases.  相似文献   

3.
《Energy》2005,30(11-12):2344-2351
Supercritical CO2 fluid is capable of extracting organic matter from rocks. Although the sealing performance of cap rock is essential for CO2 underground storage, typical cap rock such as shale or mudstone usually contains organic matter. To determine how well cap rocks can seal supercritical CO2, cap rock samples from the Nagaoka injection test site were treated with supercritical CO2, and then the porosity and pore radius distribution of the samples were measured by mercury porosimetry. The results showed that the pore radius distributions slightly shifted to a larger size after treatment, while the porosity and permeability changed less than 1%.  相似文献   

4.
为了研究橡胶废料在水工混凝土材料中的适用性,采用0~7%掺量的橡胶混凝土试样进行渗透、高速水流冲蚀及微观形态分析试验,研究了宏观物理指标随孔隙率变化的特点。结果表明,防渗与抗冲蚀性能随橡胶含量增加具有先快速增长,再缓慢下降的趋势,4.0%的橡胶对混凝土改性的效果最好;随着橡胶含量增加,试样内部孔隙分布特点发生改变,孔隙率与混凝土冲蚀率及渗透高度均保持明显的线性正相关关系;橡胶废料的含量是改善混凝土内部结构密实度的关键因素,孔隙率是影响宏观性能指标的关键。  相似文献   

5.
Macrolithotypes control the pore-fracture distribution heterogeneity in coal impacting the coalbed methane (CBM) production from the reservoir. However, few studies have focused on the characteristics of macrolithotypes. Here, the macrolithotype samples from the three continuous seams (No. 3, 5 and 11) in the Hancheng Block, Ordos Basin, China were quantitatively characterized by multiple length scales. The results indicate that the bright coal has the best development of micro-fracture than those of the other macrolithotypes, which with good openness and connectivity under the optical microscopy; N2 adsorption/desorption results reflect that the adsorption pores of the semi-dull and dull coal are more developed than the bright coal and semi-bright coal, and are dominated by plate-like and ink-bottle pores. The characteristics of the mercury intrusion/extrusion curves were determined by the mercury injection (MIP). From bright to dull coal the pore connectivity being worse, and the uniformity of pore and throats distribution becomes lower. The pore type that divided by NMR are recovered to be seepage type (the bright), comprehensive type (the semi-bright and semi-dull), and the type of adsorption (the dull). The behavioral differences would impact the porosity and permeability in coal. Thus, by the well logging evaluation approach, the relationship between coal macrolithotypes and select logging parameters were determined for coal macrolithotype identification, and with the petrel software included, the porosity-permeability models were built to investigate the permeability evolution with the coal macrolithotypes. Macrolithotypes are closely related to the permeability of coal reservoirs in this area. The greater contribution of permeability is typically from of the bright and semi-bright coal, and followed by semi-dull and dull coal, the better development of bright coal, the better permeability of the reservoir and vice versa.  相似文献   

6.
Important heat transfer parameters of aluminum foams of varying pore sizes are investigated through CT-scanning at 20 micron resolution. Small sub-samples from the resulting images are processed to generate feature-preserving, finite-volume meshes of high quality. All three foam samples exhibit similar volumetric porosity (in the range ~91–93%), and thereby a similar thermal conductivity. Effective tortuosity for conduction along the coordinate directions is also calculated. Permeability simulations in the Darcy flow regime with air and water show that the foam permeability is isotropic and is of the order of 10?7 m2. The convective heat transfer results computed for this range of Reynolds numbers exhibit a dependence on the linear porosity, even though the corresponding volumetric porosity is the same for all the samples considered.  相似文献   

7.
采用铸体薄片、扫描电镜和岩石矿物含量与结构分析技术,结合岩样压汞资料等多种技术手段,对荷包场—界市场(简称包界)试验区须家河组气藏储层的物性特征和微观孔喉结构进行了深入分析和研究。研究发现储层孔隙类型以原生残余粒间孔、次生粒间孔隙和混合孔隙为特征。当孔隙度大于7%时,储层孔隙以粒间孔为主,其喉道类型以缩颈喉道为主,次为片状喉道;当孔隙度小于7%时,孔隙以粒内溶孔为主,其喉道类型以片状喉道为主,次为管状喉道;储层内粘土矿物含量较高,伊利石呈片状、丝缕状桥接孔隙,造成对孔隙、喉道的堵塞或封隔,使孔隙的连通性进一步降低。孔喉分布总体具有单峰状,以小孔细喉型为主体,平均中值喉道半径小,渗透率贡献值与喉道分布不一致,岩样渗透性主要由少数粗喉道提供,占据大部分比例的小喉道对岩样渗透性的贡献极小。鉴于储层含水饱和度较高、气井产凝析油以及粘土含量高的现象,建议尽量保持地层压力以防止凝析油过早析出,降低经济极限产量以提高低渗、特低渗区储层的动用能力。  相似文献   

8.
In this study, permeability and capillary pressure of copper micropillar structures (height: 50 µm, diameter: 50 µm) in different arrangements (hexagonal, rectangular, and square) and different porosities (0.45/0.5, 0.6, 0.7, 0.8) are compared experimentally and numerically. The micropillar structures are fabricated on copper clad printed circuit board with electroplating, and the samples are coated with silica nanoparticles to enhance wettability. A forced liquid flow test is used to measure permeability of the samples, and capillary rate-of-rise measurement technique is used to determine the capillary pressure of the wicks. In the permeability model, the effect of meniscus curvature is considered, and the results are compared with other permeability models. Capillary pressure is predicted by using surface energy minimization tool, Surface Evolver. The test results show that the micropost array in rectangular arrangement have the highest permeability, and similar capillary pressure compared to other pillar arrangements with the same porosity, and thus show the highest capillary performance parameter. The effect of gravity on the sample characterization with capillary rate-of-rise test is also studied to investigate the feasibility of applying Washburn’s equation to test data.  相似文献   

9.
A macroscopic numerical method is proposed to study the flow distribution uniformity of a novel porous copper fiber sintered felt (PCFSF), which has gradient porosities and was developed as the methanol steam reforming micro-reactor catalyst support for hydrogen production for fuel cell applications. The macroscopic porous media developed by the ANSYS/FLUENT software is used to represent the PCFSF. Our results indicate that the gradient porosity can reshape the flow distribution of PCFSFs greatly, thus producing significant influence on their performance. It is further revealed that, for a PCFSF with a determined gradient porosity configuration but different reactant feed directions, the velocity uniformity can be used as a quantitative criterion to evaluate the performance of hydrogen production. Furthermore, new gradient PCFSFs are produced according to the flow distribution of original gradient PCFSFs. The preliminary experimental results of the new gradient PCFSFs of 0.8-0.9-0.7 and 0.7-0.9-0.8 exhibit better methanol conversion and H2 flow rate. This indicates that the numerical method can be used for the optimization of PCFSFs' gradient porosity configuration, which consists of the shape and position of the interfaces between different porosity portions, the number of interfaces and the porosity distribution in different portions.  相似文献   

10.
Flooding of the membrane electrode assembly (MEA) and dehydrating of the polymer electrolyte membrane have been the key problems to be solved for polymer electrolyte membrane fuel cells (PEMFCs). So far, almost no papers published have focused on studies of the liquid water flux through differently structured gas diffusion layers (GDLs). For gas diffusion layers including structures of uniform porosity, changes in porosity (GDL with microporous layer (MPL)) and gradient change porosity, using a one-dimensional model, the liquid saturation distribution is analyzed based on the assumption of a fixed liquid water flux through the GDL. And then the liquid water flux through the GDL is calculated based on the assumption of a fixed liquid saturation difference between the interfaces of the catalyst layer/GDL and the GDL/gas channel. Our results show that under steady-state conditions, the liquid water flux through the GDL increases as contact angle and porosity increase and as the GDL thickness decreases. When a MPL is placed between the catalyst layer and the GDL, the liquid saturation is redistributed across the MPL and GDL. This improves the liquid water draining performance. The liquid water flux through the GDL increases as the MPL porosity increases and the MPL thickness decreases. When the total thickness of the GDL and MPL is kept constant and when the MPL is thinned to 3 μm, the liquid water flux increases considerably, i.e. flooding of MEA is difficult. A GDL with a gradient of porosity is more favorable for liquid water discharge from catalyst layer into the gas channel; for the GDLs with the same equivalent porosity, the larger the gradient is, the more easily the liquid water is discharged. Of the computed cases, a GDL with a linear porosity 0.4x + 0.4 is the best.  相似文献   

11.
A Monte Carlo curved ray-tracing method is used to analyze the radiative heat transfer in one-dimensional absorbing-emitting-scattering semitransparent slab with variable spatial refractive index. A problem of radiative equilibrium with linear variable spatial refractive index is taken as an example in this paper. The predicted temperature distributions are determined by the proposed method and compared with the data in references. The results show that influences of refractive index gradient are important and the influences increase with the refractive index gradient, the temperature distribution approaches to the one obtained for a constant refractive index when the slab optical thickness is far greater than 1.0, and the effect of the scattering phase function is similar to that in the medium with constant refractive index.  相似文献   

12.
Heterogeneous catalytic fixed bed usually suffers from severe limitations of mass and heat transfer. These disadvantages limit reformers to a low efficiency of catalyst utilization. Three catalyst activity distributions have been applied to force the reactor temperature profile to be near isothermal operation for maximization of methanol conversion. A plate-type reactor has been developed to investigate the influence of catalyst activity distribution on methanol steam reforming. Cold spot temperature gradients are observed in the temperature profile along the reactor axis. It has been experimentally verified that reducing cold spot temperature gradients contributes to the improvement of the catalytic hydrogen production. The lowest cold spot temperature gradient of 3 K is obtained on gradient catalyst distribution type A. This is attributed to good characteristics of local thermal effect. Low activity at the reactor inlet with gradual rise along with the reactor flow channel forms the optimal activity distribution. Hydrogen production rate of 161.3 L/h is obtained at the methanol conversion of 93.1% for the gradient distribution type A when the inlet temperature is 543 K.  相似文献   

13.
Proton exchange membrane fuel cells have been promoted due to improved breakthrough and increased commercialization. The assembly pressure put on a single cell and a fuel cell stack has important influence on the geometric deformation of the gas diffusion layers (GDLs) resulting in a change in porosity, permeability, and the resistance for heat and charge transfer in proton exchange membrane fuel cells. In this paper, both the finite element method and the finite volume method are used, respectively, to predict the GDL deformation and associated effects on the geometric parameters, porosity, mass transport property, and the cell performance. It is found that based on the isotropic Young's modulus and the finite element method, the porosity and thickness under a certain assembly pressure are non‐homogeneous across the fuel cell in the in‐plane direction. The variations of the porosity change and compression ratio in the cross‐section plane are localized by three zones, that is, a linear porosity zone, a constant porosity zone, and a nonlinear porosity zone. The results showed that the GDL porosity and compression ratios maintain linear and nonlinear changes in the zone above the shoulders and the zone under the channel but close to the shoulder, respectively. However, a constant value is kept above the middle of the channel. The obtained non‐homogeneous porosity distribution is applied together with the deformed GDL for further computational fluid dynamics analysis, in which the finite volume method is implemented. The computational fluid dynamic results reveal that a higher assembly pressure decreases the porosity, GDL thickness, gas flow channel cross‐sectional areas, oxygen diffusion coefficient, oxygen concentration, and cell performance. The maximum oxygen mole fraction occurs where the maximum porosity exists. A sufficient GDL thickness is required to ensure transfer of fresh gas to the reaction sites far away from the channel. However, the reduction of porosity is a dominating factor that decreases the cell performance compared with the decreased gas channel flow area and GDL thickness in the assembly condition. Therefore, the assembly pressure should be balanced to consider both the cell performance and gas sealing security. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
Formation of biofilm within a porous matrix reduces the pore size and the total open space of the system, altering the porosity and permeability of the medium. This change in the pore size distribution can be quantified by expressing the porous structure with a proper geometrical model. A set of pertinent multispecies biofilm models is used to arrive at the dynamic biofilm thickness distribution. The obtained results are utilized within a modified Kozeny–Carman framework to establish permeability and porosity distribution during the biofilm formation. The biofilm thickness and the obtained permeability profile for a special microorganism, Pseudomonas aeruginosa, are compared with available experimental data. The potential reasons attributing to the differences between the numerical and experimental data are discussed.  相似文献   

15.
A micro-reactor with eight non-parallel channels is proposed to improve the performance of micro-channel steam reforming of methanol. The widths of some channels in the micro-reactor vary gradually along the reactor length direction. The Zn-Cr/CeO2-ZrO2 catalyst is coated in the reformer with a certain porosity and permeability. The effects of micro-reactor structures and catalyst-coated manners on several factors are studied, including temperature distributions, velocity distributions, reactant concentrations and the methanol conversion rate. The results indicate that such a structure with a certain entrance inclination angle and channel inclination angle guarantees flow distribution uniformity in each reforming channel. Flow distribution uniformity is conducive to the increase of the methanol conversion rate. Besides, in order to measure strengths and weaknesses of different catalyst-coated manners, a wall-coated reformer and a packed-bed reformer are studied respectively. It is found that compared to the packed-bed reformer, the temperature and the methanol conversion rate in wall-coated reformer are far higher. It is necessary to find an optimal catalyst thickness that is able to reduce the CO concentration because the catalyst thickness can affect CO concentration in the product gases indirectly. The optimal inclination angles and the catalyst thickness are proposed based on the simulating results.  相似文献   

16.
The present study discusses a detailed investigation on the implications of non-uniform porosity distribution in the gas diffusion layer (GDL) on the performance of proton exchange membrane fuel cell (PEMFC). A three-dimensional, single-phase, isothermal model of high-temperature PEMFC is employed to study the effect of non-uniform porosity distribution in GDL. The different porosity configurations with stepwise, sinusoidal, and logarithmic variation in porosity along the streamwise direction of GDL are considered. The numerical experiments are performed, keeping average porosity as constant in the GDL. The electrochemical characteristics such as the oxygen molar concentration, power density, current density, total power dissipation density, average diffusion coefficient, vorticity magnitude, and overpotential are studied for a range of porosity distributions. Furthermore, the variations of oxygen concentration, average diffusion coefficient, and vorticity magnitude are also discussed to showcase the influence of non-uniform porosity distribution. Our study reveals that the PEM fuel cell performance is the best when the porosity of the GDL decreases logarithmically in the streamwise direction. On the contrary, the performance deteriorates when the GDL porosity decreases sinusoidally. Also, it has been observed that the effects of non-uniform porosity distribution are more pronounced, especially at higher current densities. The outcomes of present investigation have potential utility in GDL fabrication and membrane assembly's sintering process for manufacturing high valued PEMFC products.  相似文献   

17.
There are wide applications for flow in a microporous medium. In this study, a computational analysis of airflow through a porous microannulus constructed by circular-based Sierpinski has been performed in a slip flow regime, where several parameters played an important role in the flow characteristics. These parameters are the Knudsen number, the average friction factor, radius ratio, and porosity. The impacts of these parameters on permeability and the gas flow characteristics are examined and analyzed thoroughly. The ranges of the investigated parameters are as follows (0.001 ≤ Kn ≤ 0.1 and the porosity range is 0.75 ≤ ε ≤ 0.95). The results showed that porosity has a significant impact on the velocity distribution and Darcy number. The Knudsen number has also a direct effect on the velocity distribution, while it has a positive logarithmic proportionality with a dimensionless permeability but the radius ratio does have a neglected effect on the Darcy number. Moreover, the effect of the average friction factor has an inverse proportional relationship to the Darcy number.  相似文献   

18.
The multiple-relaxation-time (MRT) lattice Boltzmann method (LBM) with multi-reflection solid boundary conditions is used to study anisotropic permeabilities of a carbon paper gas diffusion layer (GDL) in a fuel cell. The carbon paper is reconstructed using the stochastic method, in which various porosities and microstructures are achieved to simulate different samples. The simulated permeability and tortuosity show anisotropic characteristics of the reconstructed carbon papers with in-plane permeability higher than through-plane, and in-plane tortuosity lower than through-plane. The calculated permeabilities are in good agreement with existing measurements. The relationship between the permeability and the porosity is fitted with empirical relations and some fitting constants are determined. Furthermore, the obtained relationship of tortuosity and porosity is used in a fractal model for permeabilities. The results indicate that the fractal model and the Kozeny–Carman equation provide similar predictions on the through-plane permeability of the carbon paper GDL.  相似文献   

19.
Permeability of fractal porous media by Monte Carlo simulations   总被引:2,自引:0,他引:2  
The permeability of the fractal porous media is simulated by Monte Carlo technique in this work. Based on the fractal character of pore size distribution in porous media, the probability models for pore diameter and for permeability are derived. Taking the bi-dispersed fractal porous media as examples, the permeability calculations are performed by the present Monte Carlo method. The results show that the present simulations present a good agreement compared with the existing fractal analytical solution in the general interested porosity range. The proposed simulation method may have the potential in prediction of other transport properties (such as thermal conductivity, dispersion conductivity and electrical conductivity) in fractal porous media, both saturated and unsaturated.  相似文献   

20.
In this paper, the plane-radial and plane-parallel flows for Newtonian fluid in fractal porous media are analyzed. Based on the assumption that the porous medium consists of a bundle/set of tortuous streamlines/capillaries and on the fractal characteristics of pore size distribution in porous media, the expressions for porosity, flow rate, velocity and permeability for both radial and parallel flows are developed. The obtained expressions are the functions of tortuosity, fractal dimension, maximum and minimum pore diameters, and there are no empirical constant and every parameter has clear physical meaning in the expressions. The pressure distribution equations for plane-radial and plane-parallel flows in fractal porous media are also derived. The pressure and velocity distributions in plane-radial reservoirs are calculated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号