首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Underground hydrogen storage (UHS) in depleted hydrocarbon reservoirs is a prospective choice to store enormous volumes of hydrogen (H2). However, these subsurface formations must be able not only to store H2 in an effective and secure manner, but also to produce the required volumes of H2 upon demand. This paper first reviews the critical parameters to be considered for geological analysis and reservoir engineering evaluation of UHS. The formation depth, the interactions of rock-brine-H2, the caprock (seal) and well integrity are the most prominent parameters as far as UHS is concerned. In respect of these critical parameters, tentative H2 storage is screened from the existing gas storage fields in the Niigata prefecture of Japan, and it was revealed that the Sekihara gas field is a suitable candidate for UHS with a storage capacity of 2.06 × 108 m3 and a depth of 1000 m. Then, a series of numerical simulations utilizing CMG software was conducted to find out the extent to which critical parameters alter H2 storage capacity. The results demonstrated that this field, with a recovery factor of 82.7% in the sixth cycle of production is a prospective site for H2 storage.  相似文献   

2.
Geological storage has been proposed as a new technology to temporarily store significant amounts of hydrogen (H2) gas in depleted gas reservoirs, underground salt caverns, or saline aquifers. Often, such subsurface reservoirs naturally contain trace amounts of organic acids, and these compounds can considerably alter the wettability of reservoir rocks, causing them to become less water-wet. We carried out Molecular Dynamics (MD) simulations of contact angles in a quartz-brine-H2 system to evaluate wettability in realistic subsurface situations. MD simulations suggest that Humic acid makes quartz more hydrophobic, which can affect the overall behaviour of the storage reservoir. For the first time, this effect was experimentally investigated for a natural sandstone reservoir from the South West Hub Project, i.e., the Lesueur Sandstone (LS) formation. Multi-stage core flooding experiments were conducted on the same LS plug to investigate the impact of wettability alteration on initial and residual hydrogen saturation/trapping at depth. First, consecutive brine-H2 drainage-imbibition cycles were carried out on the natural sample; the result indicated that the rock-brine-H2 system was essentially water-wet. Then, the sample was aged in Humic acid with a molarity of 10−2 M for 42 days at 5 °C and 0.1 MPa. The wettability of the storage system shifted toward a less water-wet state, i.e., more hydrophobic. As a result of Humic acid ageing, the initial hydrogen saturation reduced from 29% to 15%, and the residual hydrogen trapping reduced from 23% to 11%. This is attributed to a change induced in the capillary force (i.e., snap-off) controlled by wettability and pore size. In addition, the wettability change induced by Humic acid increased the hydrogen recovery rate from 20.7% to 26.7%.  相似文献   

3.
Electrolysis followed by underground hydrogen storage (UHS) in both salt caverns and depleted oil and gas reservoirs is widely considered as a potential option to overcome fluctuations in energy provision from intermittent renewable sources. Particularly in the case of depleted oil and gas reservoirs, a denser layer of cushion gas (N2, CH4 or CO2) can be accommodated in these storage volumes to allow for sufficient system pressure control as hydrogen is periodically injected and extracted. These gases/fluids are however fully soluble with hydrogen and thus with sufficient mixing can undesirably contaminate the extracted hydrogen product. Fluid mixing in a porous medium is typically characterized by a dispersion coefficient (KL), which is hence a critical input parameter into reservoir simulations of underground hydrogen storage. Such dispersion data is however not readily available in the literature for hydrogen at relevant storage conditions. Here we have developed and demonstrated novel methodology for the measurement of KL between hydrogen and nitrogen in a Berea sandstone at 50 bar as a function of displacement velocity (0.007–0.722 mm/s). This leverages off previous work quantifying KL between carbon dioxide and methane in rock cores relevant to enhanced gas recovery (EGR). This used infrared (IR) spectroscopy to differentiate the two fluids, hydrogen is however IR invisible. Hence the required time-resolved quantification of hydrogen concentration emerging from the rock core is uniquely performed here using bench-top nuclear magnetic resonance (NMR). The resultant hydrogen-nitrogen dispersion data as a function of displacement velocity allows for the determination of dispersivity (α = 0.31 mm). This intrinsic rock property compares favorably with previous CO2 dispersion measurements on similar sandstones, hence validating our methodology to some extent. In addition, at very low velocities, determination of the rock core tortuosity (τ, another intrinsic rock property) produces a value (τ = 10.9) that is similar to that measurement independently using pulsed field gradient NMR methods (τ = 11.3).  相似文献   

4.
Salt caverns are a safe and well-proven reservoir for large-scale natural gas storage and hence, a potential hydrogen storage. Contrary to natural gas, hydrogen is a favorable energy source for many microorganisms. Microorganisms are ubiquitously abundant in the upper lithosphere and therefore expected to be present also in subsurface geological formations potentially selected for H2 storage, such as salt caverns. Thus, future salt cavern hydrogen storage requires monitoring of the cavern microbiome, to evaluate and prevent unwanted microbial activities. In this study, we analyzed the microbiomes of brines sampled from the bottom of five German natural gas storage caverns. All brines were colonized by microorganisms in considerable cell numbers ranging from 2 × 106 cells ml?1 to 7 × 106 cells ml?1. The structures of the microbiomes were characterized by 16S rRNA gene amplicon sequencing. A core community detected in all five studied caverns consists of members affiliated to the Halobacteria, Halanaerobiales and Balneolales. Further, a phylotype belonging to the extremely halophilic, lithoautotrophic and sulfate-reducing genus Desulfovermiculus was found. Examination of microbial activity also included measuring hydrochemical parameters in order to assess the salt concentrations and the availability of nutrients and potential microbial carbon sources or metabolites. NaCl (4.7 M) was the main salt and sulfate (at average 40.8 mM) the main electron acceptor; methanol (up to 37.5 mM) and ethanol (up to 6.9 mM) were of anthropogenic origin and found in higher concentrations. Some putative microbial metabolites were found in lower concentrations (butyrate, ≤0.7 mM; formate, ≤0.08 mM; acetate, ≤0.5 mM; lactate, ≤0.06 mM); their potential relation to microbial activity is discussed. We propose a guideline for sampling and subsequent chemical and molecular biological analysis for future characterization of microbial communities of salt cavern brines.  相似文献   

5.
Hydrogen is regarded as one of the most important energy sources for the future. Safe, large-scale storage of hydrogen contributes to the commercial development of the hydrogen industry. Use of bedded salt caverns for natural gas storage in China provides a new option for underground hydrogen storage (UHS). In this study, the physical properties of multicomponent gases in UHS and salt rock are reviewed and discussed, along with the flow of hydrogen in the surrounding salt rock. Mathematical models of the two-phase multicomponent flow of the gas–brine system in the UHS were established. A numerical model of a simplified elliptical salt cavern was built to simulate the migration of the gas–brine system in the UHS. The hydrogen tightness of the UHS was evaluated through simulation with different storage strategies, salt rock and interlayer permeabilities, and gas components. The results indicate that: (1) Cyclic injection and withdrawal facilitate hydrogen leakage, which is accelerated by increasing the frequency. (2) The huff-n-puff of hydrogen gas in the injection and withdrawal cycles forces the gas into pore space and enhances the relative permeability of the gas phase. The migration of hydrogen and brine weakens the hydrogen tightness. Brine saturation is an important index for evaluating the hydrogen tightness of UHS. (3) The leakage rate of UHS increases with an increase in the permeability of the salt rock and interlayer and the total thickness of the interlayers. The average permeability Kwa weighted by the thickness of layers for the bedded salt formation is proposed to integrate three variables to facilitate field application of the simulation results. The critical Kwa is less than 3.02 × 10−17 m2 if the recommended annual hydrogen leakage rate is less than 1%. (4) The difference between hydrogen and other gas species is another important factor in the leakage rate and should be considered. This study provides theoretical guidance for evaluating the feasibility of UHS in salt caverns and site selection in China.  相似文献   

6.
Hydrogen can act as an energy store to balance supply and demand in the renewable energy sector. Hydrogen storage in subsurface porous media could deliver high storage capacities but the volume of recoverable hydrogen is unknown. We imaged the displacement and capillary trapping of hydrogen by brine in a Clashach sandstone core at 2–7 MPa pore fluid pressure using X-ray computed microtomography. Hydrogen saturation obtained during drainage at capillary numbers of <10?7 was ~50% of the pore volume and independent of the pore fluid pressure. Hydrogen recovery during secondary imbibition at a capillary number of 2.4 × 10?6 systematically decreased with pressure, with 80%, 78% and 57% of the initial hydrogen recovered at 2, 5 and 7 MPa, respectively. Injection of brine at increasing capillary numbers up to 9.4 × 10?6 increased hydrogen recovery. Based on these results, we recommend more shallow, lower pressure sites for future hydrogen storage operations in porous media.  相似文献   

7.
The subsurface storage of hydrogen (H2) provides a potential solution for load-balancing of the intermittent electricity production from renewable energy sources. In such technical concept, surplus electricity is used to power electrolyzers that produce H2, which is then stored in subsurface formations to be used at times when renewable electricity is not available. Blending H2 with natural gas (NG) for injection into depleted gas/oil reservoirs, which are already used for NG storage, is considered a good option due to the lower initial capital cost and investment needed, and potential lower operating costs. In this study, the potential impact of storing a mixture of H2 and NG in an existing NG storage field was investigated. Relevant reservoir, caprock and cement samples from a NG storage formation in California were characterized with respect to their permeability, porosity, surface area, mineralogy and other structural characteristics, before and after undergoing 3-month incubation experiments with H2/NG gas mixtures at relevant temperature and pressure conditions. The results indicated relatively small changes in porosity and mineralogy due to incubation. However, the observed changes in permeability were more dramatic. In addition, polymeric materials, similar to those used in NG storage operations were also incubated, and their dimensions were measured before and after incubation. These measurements indicated swelling due to the exposure to H2. However, direct evidence of geochemical reactions involving H2 was not observed.  相似文献   

8.
Hydrogen separation from nitrogen containing gas mixture using Pd-Ag membrane shows a time lag and low hydrogen recovery during start-up period. In this study, forced unsteady state operation using a composition modulation of the feed gas was employed as a new operation method to increase the hydrogen recovery and to shorten the time lag. In this work, the performance of Pd75-Ag25 membrane during the separation of hydrogen from H2/N2 mixture under forced unsteady state operation at 623 K was investigated. During natural start-up without forced operation, the hydrogen recovery results in 35% and 14% for H2/N2 feed gas compositions of 70%/30% and 50%/50%, respectively, while the time lag in the natural operation results in 195 and 147 min for H2/N2 feed gas compositions of 70%/30% and 50%/50%, respectively. The experimental results show that forced unsteady state operation affects considerably on hydrogen recovery from H2/N2 mixture and the time lag during start-up. The maximum hydrogen recovery in the forced unsteady state operation is 60%, obtained at switching time 5 min and H2/N2 feed gas composition of 70%/30%, while for H2/N2 feed gas composition of 50%/50% the hydrogen recovery is not significantly influenced by switching time. The time lag indicates a profound decay trend monotonically by decreasing the switching time for both H2/N2 feed gas compositions.  相似文献   

9.
Hydrogen has attracted attention worldwide with its favourable inherent properties to contribute towards a carbon-free green energy future. Australia aims to make hydrogen as its next major export component to economize the growing global demand for hydrogen. Cost-effective and safe large-scale hydrogen storage in subsurface geology can assist Australia in meeting the projected domestic and export targets. This article discusses the available subsurface storage options in detail by first presenting the projected demand for hydrogen storage. Australia has many subsurface formations, such as depleted gas fields, salt caverns, aquifers, coal seams and abandoned underground mines, which can contribute to underground hydrogen storage. The article presents basin-wide geological information on the storage structures, the technical challenges, and the factors to consider during site selection. With the experience and knowledge Australia has in utilizing depleted reservoirs for gas storage and carbon capture and sequestration, Australia can benefit from the depleted gas reservoirs in developing hydrogen energy infrastructure. The lack of experience and knowledge associated with other geostructures favours the utilization of underground gas storage sites for the storage of hydrogen during the initial stages of the shift towards hydrogen energy. The article also provides future directions to address the identified important knowledge gaps to utilize the subsurface geology for hydrogen storage successfully.  相似文献   

10.
Gas hydrates are non-conventional materials offering great potential in capturing, storage, and sequestration of different gases. The weak van der Waals interactions between a gas molecule and the pore walls stabilize these non-stoichiometric structures. The present article reports an ab initio improved van der Waals density functional (vdW-DF2) study devoted to the interactions associated with H2, CH4, and CO2 adsorption in sI clathrate hydrate. The study provides the clathrate stability, diffusion, and energy storage of possible mixed gas occupancy in sI cages in the presence of H2. The results also provided the hydrogen energy landscapes and the estimated diffusion activation energy barriers to the large and small cage to be 0.181 and 0.685 eV, respectively. In addition, the results showed that the presence of CH4 or CO2 could enhance the storage capacity, thermodynamic stability, and hydrogen diffusion in sI clathrates. The volumetric storage, gravimetric storage, and molecular hydrogen content in H2–CH4 binary sI clathrate are calculated to be 2.0 kW h/kg, and 1.8 kW h/L, and 5.0 wt%, respectively. These results are comparable to DOE targets of hydrogen storage.  相似文献   

11.
The role of hydrogen in a future energy system with a high share of variable renewable energy sources (VRES) is regarded as crucial in order to balance fluctuations in electricity generation. These fluctuations can be compensated for by flexibility measures such as the expansion of transmission, flexible generation, larger back-up capacity and storage. Salt cavern storage is the most promising technology due to its large storage capacity, followed by pumped hydro storage. For the underground storage of chemical energy carriers such as hydrogen, salt caverns offer the most promising option owing to their low investment cost, high sealing potential and low cushion gas requirement. This paper provides a suitability assessment of European subsurface salt structures in terms of size, land eligibility and storage capacity. Two distinct cavern volumes of 500,000 m3 and 750,000 m3 are considered, with preference being given for salt caverns over bedded salt deposits and salt domes. The storage capacities of individual caverns are estimated on the basis of thermodynamic considerations based on site-specific data. The results are analyzed using three different scenarios: onshore and offshore salt caverns, only onshore salt caverns and only onshore caverns within 50 km of the shore. The overall technical storage potential across Europe is estimated at 84.8 PWhH2, 27% of which constitutes only onshore locations. Furthermore, this capacity decreases to 7.3 PWhH2 with a limitation of 50 km distance from shore. In all cases, Germany has the highest technical storage potential, with a value of 9.4 PWhH2, located onshore only in salt domes in the north of the country. Moreover, Norway has 7.5 PWhH2 of storage potential for offshore caverns, which are all located in the subsurface of the North Sea Basin.  相似文献   

12.
Hydrogen (1H) trapped at intermetallic particles (IPs) in an aluminum alloy, 6061-T6, was visualized with secondary ion mass spectrometry (SIMS) by precisely excluding the false signal which is caused by background hydrogen (HBG). The interference of the HBG was avoided by a unique continuous pre-sputtering (pre-digging) by a primary ion beam of SIMS into a sample in combination with silicon sputtering prior to the SIMS measurement of the sample and we succeeded in visualizing the exact signal of 1H trapped by IPs at subsurface layer of the sample charged in high-pressure hydrogen gas. The thermal desorption analysis clarified that the desorption energy (Ed) of the IPs was 200 kJ/mol or higher, which was extremely higher than Ed for lattice interstice, dislocations, and vacancies. High density hydrogen was concentratedly trapped at IPs in the subsurface layer in contact with the hydrogen gas. This nature causes an extremely low effective hydrogen diffusivity of 6061-T6 of the order of 10?14 m2/s even at 200 °C and may eventually give a high HE resistance to 6061-T6.  相似文献   

13.
Hydrogen is among a few promising energy carriers of the future mainly due to its zero-emission combustion nature. It also plays an important role in the transition from fossil fuel to renewable. Hydrogen technology is relatively immature and serious knowledge gaps do exist in its production, transport, storage, and utilization. Although the economical generation of hydrogen to the scale required for such transition is still the biggest technical and environmental challenge, unlocking the large-scale but safe storage is similarly important. It is difficult to store hydrogen in solid and liquid states and storing it in the gaseous phase requires a huge volume which is just available in subsurface porous media. Sandstone is the most abundant and favourable medium for such storage as carbonate rock might not be suitable due to potential geochemical reactions.It is well established in the literature that interaction of the host rock-fluid and injected gas plays a crucial role in fluid flow, residual trapping, withdrawal, and more generally storing capacity. Such data for the hydrogen system is extremely rare and are generally limited to contact angle measurements, while being not representative of the reality of rock-brine-hydrogen interaction(s). Therefore, we have conducted, for the first time, a series of core flooding experiments using Nuclear Magnetic Resonance (NMR) to monitor hydrogen (H2) and Nitrogen (N2) gas saturations during the drainage and imbibition stages under pressure and temperature that represent shallow reservoirs. To avoid any geochemical reaction during the test, we selected a clean sandstone core plug of 99.8% quartz (Fontainebleau with a gas porosity of 9.7% and a permeability of 190 mD).Results show significantly low initial and residual H2 saturations in comparison with N2, regardless of whether the injection flow rate or capillary number were the same or not. For instance, when the same injection flow rate was used, H2 saturation during primary drainage was 4% and it was <2% after imbibition. On other hand, N2 saturation during the primary drainage was 26% and it was 17% after imbibition. However, when the same capillary number of H2 was utilised for the N2 experiment, the N2 saturation values were ~15% for initial gas saturation and 8% for residual gas saturation. Our results promisingly support the idea of hydrogen underground storage; however, we should emphasise that more sandstone rocks of different clay mineralogy should be investigated before reaching a conclusive outcome.  相似文献   

14.
Subsurface hydrogen (H2) storage in geological formations is of growing interest for decarbonization. However, there is a knowledge gap in understanding the multiphase flow involved in this process, which can have a significant impact on the recovery performance of H2. Therefore, a full-compositional modeling study was conducted to analyze potential issues and to understand the fundamental hydrodynamic mechanisms of H2 storage. We performed a range of 2D vertical simulations at the decametre scale with a very fine cell size (0.1 m) to observe the detailed flow behaviour of H2 with carbon dioxide (CO2) as cushion gas in various flow regimes. Issues such as viscous instability, capillary bypassing, gas trapping and gravity segregation are analysed here. To generalize our calculations, we have validated and applied the scaling theory in the context of subsurface H2 storage. Since this study is focused on the hydrodynamic behaviour, three dimensionless groups, including aspect factor, capillary/viscous ratio and gravity/viscous ratio were identified to correlate recovery performance between various scales in a fixed heterogeneous system. It was found that H2 could infiltrate the cushion gas in the proximity of the injectors, meaning that CO2 is not displaced away from the injectors in a piston-like fashion. As a result, the purity of the back produced H2 is much degraded, particularly in a viscous-dominated scenario. On the other hand, the injected H2 mostly accumulates at the top forming a highly restricted mixing zone with CO2 in the gravity-dominated case. The recovery performance is therefore much improved in this case. Although the gas distribution can be significantly altered by capillary forces leading to bypassed zones, the recovery performance of H2 is hardly influenced. This is because the back-produced H2 recovery is not dependent on the sweep efficiency of the gas. H2 can be back produced following the same paths which were formed during injection.  相似文献   

15.
A quasi-dimensional model has been developed for an SI engine fuelled with natural gas/hydrogen blends, the combustion chamber was divided into two zones by the flame front, and a turbulent entrainment combustion model was conducted. This paper investigates the effects of calibration coefficients on the model, which includes the turbulence intensity coefficient C2, the Taylor length scale coefficient C3, and the Ignition lag coefficient Cig. Validation by experiments is carried out under various operating conditions including different ignition timing, excess air ratio, manifold ambient pressure (MAP) and fraction of hydrogen enrichment. The results show that Cig always stay the same at 1.52. When the fuel is pure natural gas, C3 plays an important role in the simulation which changes from 0.95 to 2. The main factor changes from C3 to C2 when the hydrogen fraction increases from 30% to 55%. When the engine is fuelled by pure hydrogen C2 to changes from 1.65 to 2.1.  相似文献   

16.
Recently, a new family of two-dimensional (2D) MXene materials was prepared by exfoliating the MAX phases (ACS Nano 2012, 6, 1322). Among all possible MXene phases, theoretically 2D Sc2C possesses the highest surface area per weight and thus is expected to have the highest gravimetric hydrogen storage capacities. In this work, using first-principles total energy pseudopotential calculations, we systematically investigated the hydrogen storage properties of 2D Sc2C phase. Depending on different adsorption sites, the hydrogens are bound by three modes: chemisorption, physisorption and Kubas-type interactions with the binding energies of 4.703, 0.087 and 0.164 eV respectively. The maximum hydrogen storage capacity was calculated to be 9.0 wt.%, which meets the gravimetric storage capacity target (5.5 wt.% by 2015) set by the U.S. DOE. Ab-initio molecular dynamic simulations confirmed that 3.6 wt.% hydrogen molecules storaged by Kubas-type interactions can be adsorbed and released reversibly at ambient conditions.  相似文献   

17.
In this work, we report DFT calculations of the energy formation and stability of multi-vacancies in a unit of Zeolite Template Carbon (C39H9). We label as Vn the respective vacancy where n carbon atoms have been removed from the pristine C39H9 structure. The results show that V2, V4, V6 and V9 are the most stable vacancies on the ZTC structure. This result agrees with many other studies. Besides, the most stable vacancy of ZTC structure is when nine carbon atoms are removed (V9) from the ZTC structure. The formation of pentagon rings in the reconstruction of the ZTC vacancy give drastic effect on the energetics stability. Therefore, the formation of pentagon rings eliminates the dangling bonds thus lowering the energy formation. It is also carried out the decoration of ZTC vacancy with Lithium and Calcium atoms, this is the way to use de ZTC vacancy decorated as a medium for hydrogen storage. The results show that the ZTC vacancy decorated with 3 Lithium atoms can adsorb a maximum of nine hydrogen molecules (3 hydrogen molecules per Lithium atom). This gives a gravimetric storage capacity of 4.44 wt percent (wt. %), which is not enough for meeting DOE gravimetric target. On the other hand, to reach DOE gravimetric target, the study of ZTC vacancy decorated with 3 Calcium atoms is carried out, which can adsorb maximum of fifteen hydrogen molecules (5 hydrogen molecules per Calcium atom), this gives gravimetric storage capacity of 5.81 wt %, which meet DOE gravimetric targets, besides the binding energy of hydrogen molecules on ZTC vacancy decorated with 3 Calcium is calculated. These energies are in the range 0.2453–0.2053 eV/H2, which are desirable energies for hydrogen adsorption. This is demonstrated by building isotherm adsorption path. The results show that forming vacancies on ZTC structure decorated with three Calcium atoms (3CaC30H9) is good candidate as medium for hydrogen storage.  相似文献   

18.
Concentrating solar power (CSP) plants require thermal energy storage (TES) systems to produce electricity during the night and periods of cloud cover. The high energy density of high-temperature metal hydrides (HTMHs) compared to state-of-the-art two-tank molten salt systems has recently promoted their investigation as TES systems. A common challenge associated with high-temperature metal hydride thermal energy storage systems (HTMH TES systems) is storing the hydrogen gas until it is required by the HTMH to generate heat. Low-temperature metal hydrides can be used to store the hydrogen but can comprise a significant proportion of the overall system cost and they also require thermal management, which increases the engineering complexity. In this work, the potential of using a hydrogen compressor and large-scale underground hydrogen gas storage using either salt caverns or lined rock caverns has been assessed for a number of magnesium- and sodium-based hydrides: MgH2, Mg2FeH6, NaMgH3, NaMgH2F and NaH. Previous work has assumed that the sensible heat of the hydrogen released from the HTMH would be stored in a small, inexpensive regenerative material system. However, we show that storing the sensible heat of the hydrogen released would add between US$3.6 and US$7.5/kWhth to the total system cost for HTMHs operating at 565 °C. If the sensible heat of released hydrogen is instead exploited to perform work then there is a flow-on cost reduction for each component of the system. The HTMHs combined with underground hydrogen storage all have specific installed costs that range between US$13.7 and US$26.7/kWhth which is less than that for current state-of-the-art molten salt heat storage. Systems based on the HTMHs Mg2FeH6 or NaH have the most near term and long term potential to meet SunShot cost targets for CSP thermal energy storage. Increasing the operating temperature and hydrogen equilibrium pressure of the HTMH is the most effective means to reduce costs further.  相似文献   

19.
The application of LaNi5 based alloys as adsorbent for hydrogen separation and purification has been proposed for a long time. However, the actual utilization is limited by the poor CO tolerance of the alloys at atmospheric temperature. In this study, an elevated temperature vacuum pressure swing adsorption (ET-VPSA) method for H2 separation using hydrogen storage material LaNi4.3Al0.7 is proposed and demonstrated to be energy efficient. Elevating the working temperature results in improved CO tolerance of LaNi4.3Al0.7, making it possible for the alloy to be used in more situations. An ET-VPSA model was built to explore the correlations between product H2 purity, recovery rate, feed gas composition, cycle duration and counter-current blow down (CD) pressure. The results show that H2 recovery rate of ET-VPSA reaches 95% while it is usually 85% or lower for regular pressure swing adsorption (PSA). The energy efficiency of these two separation methods is evaluated by methanol reforming-proton exchange membrane fuel cell system models which contain PSA or ET-VPSA as H2 purification unit. A larger net power generation amount indicates less energy loss during H2 purification process. Although the vacuum pump will lead to extra energy consumption, benefiting from higher H2 recovery rate, the net efficiency of the system with ET-VPSA is 0.475, still higher than that with PSA (0.448).  相似文献   

20.
The Combined Hydrogen, Heat and Power (CHHP) system consists of a molten carbonate fuel cell, DFC300. DFC300 consumes biogas, and produces electricity and hydrogen. The high temperature flue gas can be recovered for useful purposes. During the hydrogen recovery process, the anode exhaust gas (37.1% H2O, 45.9% CO2, 5.7% CO, and 11.2% H2) is sent through a water gas shift (WGS) reactor to increase the hydrogen and carbon dioxide composition, and then water is removed in a vapor–liquid separator. The remaining hydrogen and carbon dioxide mixture gas is separated using a 2-adsorber pressure swing adsorption unit under 1379 kPa. Resulting hydrogen can achieve 99.99% purity, and it can be stored in composite hydrogen storage tanks pressurized at 34,474 kPa. Hydrogen is produced at a rate of 2.58 kg/h. The produced hydrogen is filled into transportable hydrogen cylinders and trucked to a residential community 7.5 km away from the CHHP site. The community is powered by fuel cells to supply electricity to approximately 51 apartments. A heat recovery unit to produce steam and hot water recovers hot air exhaust from the DFC300, having a total heating value of 405 MJ/h. The greenhouse employs a two-phase steam heating system. Hot water supply is mainly needed for the CHHP education center. DFC300 produces electricity at a maximum capacity of 280 kW. A substation is built to set up the interconnections. Power poles and power lines are built to distribute electricity to the CHHP system, the education center, and the greenhouse. The overall electricity consumption of the CHHP system is 86 kW, and the greenhouse consumes 40 kW. Therefore, an aggregate of 154 kW of power can be used to provide power to the UC Davis campus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号