首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogen and sulfur co-doped graphene (NSG) is prepared by a facile microwave irradiation method and palladium-tungsten (PdW) alloy nanoparticles are supported on the NSG substrate. Several techniques, including X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry and scanning electrochemical microscopy etc. are used to characterize the physical and electrochemical properties of the as-prepared samples. It is found that the PdW alloy nanoparticles are uniformly dispersed on the surface of NSG and the electrochemical performance of PdW/NSG is much better than those of Pd/NSG and Pd/G. The reason for the improved electrochemistry performance of PdW/NSG is considered to be the strong interactions and synergetic effects between PdW nanoparticles and NSG.  相似文献   

2.
At present, fuel cell is considered to be one of the most ideal application technologies of hydrogen energy. In order to develop fuel cells on a large scale and in a sustainable way, low platinum or non-platinum oxygen reduction catalyst has become a research hotspot. In this work, a kind of doped carbon-based catalyst MPFe1Cu1-850 is prepared by high temperature synthesis. The catalyst has an ultra-thin lamellar porous structure. In an acidic medium, the MPFe1Cu1-850 displays good oxygen reduction reaction (ORR) activity (ΔE1/2 = 0.725 V). In addition, it shows better stability (91%) and higher methanol tolerance than that of commercial Pt/C catalyst. In our catalyst MPFe1Cu1-850, the contents of nitrogen, iron and copper are 10.31 at.%, 0.51 at.%, and 0.50 at.%, respectively. This work shows that high N content, and the proper ratio of iron to copper (Fe:Cu = 1:1), are conducive to the enhancement of ORR activity.  相似文献   

3.
The hydrogen evolution reaction (HER) is a key step for producing hydrogen by water electrolysis, and an economical, facile and environment friendly method of fabricating catalysts for HER is urgent and essential. In this work, we design a high efficient and stable HER catalyst though a simple adsorption and pyrolysis method. The fabricated catalyst presents ruthenium (Ru) quantum dots (QDs) uniformly distributes on the carbon nanofibers (CNF) with a three dimensional (3D) networks structure (Ru@CNF). By means of quantum size effect of Ru QDs and the 3D networks structure of the carbon nanofibers, the former is beneficial to provide more catalytic active sites and the latter is in favour of electron transport. The sample Ru@CNF exhibits a low overpotential of 20 mV at a current density of 10 mA cm−2 and Tafel slope of 31 mV dec−1 in 1 M KOH, which is better than that of Pt/C (28 mV and 36 mV dec−1), and most of reported Ru-based and transition metal catalysts. Furthermore, it exhibits robust stability when testing at an overpotential of 75 mV for 24 h. Therefore, this work provides a low-cost, simple and feasible method for fabricating HER catalyst, which possesses commercial application prospect in the field of producing hydrogen by water electrolysis.  相似文献   

4.
Transition metal borides have great potential to be low-cost, high-performance catalysts for novel energies despite the synthesis is rather difficult. In this paper, the reduced graphene oxide (rGO) supported iron boride (Fe2B/rGO) based catalysts are synthesized by a facile reduction method. The successful synthesis of Fe2B is confirmed by X-ray diffraction, scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray photo-electron spectroscopy (XPS) and other tests. HRTEM tests showed that the constructed Fe2B was embedded in the rGO, where B played the role of coordination atoms which could regulate the electronic structure of the catalysts and improve the catalytic performance towards oxygen reduction reaction (ORR). The electrochemistry tests showed that the peak current intensity of the Fe2B/rGO catalyzed ORR could be reached up to 7.6 mA/cm2, which surpassed that of the Pt/C (20 wt%) catalyst. The current intensity can be kept at 82.47% after continuous running 20,000 s, which is higher than the Pt/C catalyst (79.4%). The onset potential reaches up to 0.95 V, which is only 0.06 V lower than that of Pt/C (20 wt%) catalyst. Both RDE and RRDE tests confirmed that the Fe2B/rGO catalyzed ORR major happed through 4-electron pathway. The redistributed electron between iron and boron atoms promoted the happening of ORR on Fe2B/rGO catalysts. The results of this work provide a novel way to develop high performance transition metal boride based catalysts for ORR.  相似文献   

5.
Spinel CoFe2O4 supported on three dimensional graphene (3DG) is prepared by hydrothermal reaction, which is denoted as CoFe2O4/3DG. The 3DG is prepared by the templated method, where coal tar pitch (CTP) and MgO are used as the carbon source and the template, respectively. The microstructure and composition of the resultant have been investigated by X-ray diffraction as well as X-ray photoelectron spectroscopy indicating the formation of spinel CoFe2O4 and composite of CoFe2O4/3DG. The multilayer structure of 3DG and CoFe2O4/3DG is also examined by the Raman spectra. Electrochemically, CoFe2O4/3DG shows high-performance half-wave potential is 0.80 V vs. RHE in O2-saturated 0.1 M KOH, which is compared to 20 wt% Pt/C. When evaluated for OER activity, CoFe2O4/3DG obtains a low overpotential 1.63 V vs. RHE (at j = 10 mA cm−2), which is 180 mV better than 20 wt% Pt/C. Moreover, it possesses excellent durability superior to 20 wt% Pt/C.  相似文献   

6.
An Ag8 cluster deposited on three different types of nitrogen (N)-doped graphene was studied using density functional theory calculations with empirical pair potentials (DFT-D). Among the different kinds of N-doped graphene, the pyridinic-N3 (P-N3) type can act as the best anchor position to stabilize Ag8. In addition, it is found that supported Ag8 clusters show higher activity in oxygen reduction reaction compared to unsupported clusters due to significant decrease in O2 adsorption energy and higher charge transfer to O2. Electron transfer from Ag to O2 leads to the elongation of the OO bond, which facilitates the breaking of this bond in the oxygen reduction reaction. All results suggest that N-doped graphene support can play a significant role in the chemical reactivity of a Ag8 cluster in oxygen reduction reaction.  相似文献   

7.
Iron, nitrogen, sulfur co-doped Fe/N/C catalyst (poly-AT/Me–Fe/N/C) with the structure of graphene-like nanosheets around carbon nanoparticles were successfully synthesized for oxygen reduction reaction (ORR). 2-Aminothiazole and melamine were utilized as the dual-nitrogen-source. The results showed that 2-Aminothiazole, as the nitrogen and sulfur source, contributed to in-situ synthesizing graphene-like nanosheets around KJ-600 carbon nanoparticles with high specific surface area (1098 m2/g). Proper method to introduce melamine during the synthesis could increase the content of pyridinic-N and Fe-Nx moieties in the catalyst without changing the morphology. Due to the high surface area and high content of pyridinic-N and Fe-Nx moieties, the obtained poly-AT/Me–Fe/N/C catalyst exhibited high electrochemical activity and stability with the half-wave potential of 0.84 V (RHE) in 0.1 M NaOH solution, which is merely 17 mV lower than commercial Pt/C. The electron transfer number was 3.83, indicating a nearly 4e? transfer for the ORR with low HO2? yield.  相似文献   

8.
Fe-Nx catalysts have received widespread attention in recent years due to their excellent catalytic performance, hoping to replace platinum for oxygen reduction reactions (ORR). In recent years, more studies have shown that when the catalyst contains two or more metals doped, its catalytic performance will be improved. Herein, using the high temperature pyrolysis method, through the incorporation of the second phase metal (Zr), melamine as the nitrogen source, and thiourea as the sulfur source, a high-activity carbon-based catalyst doped with Fe and Zr bimetals was synthesized. Originating from the strong interaction between Fe species and ZrO2 clusters and the promotion of O2 adsorption by ZrO2 nanoparticles supported on nitrogen-doped carbon, this catalyst has a better ORR electrocatalytic performance than 46% TKK commercial platinum carbon in 0.1 M KOH, exhibiting an onset potential of 1.047 V vs RHE, a half-wave potential of 0.909 V vs RHE. It provides a new idea for the preparation of high-performance bimetallic-doped carbon-based electrocatalysts.  相似文献   

9.
The economical, efficient and durable oxygen reduction catalysts facilitate the enhancement of electrochemical energy devices competitiveness towards widespread applications. In view of this, we provide an innovative sulfuration inducing method for the synthesis of ZnS and cobalt nanoparticles decorated N, S co-doped CNTs (ZnS/Co-NSCNTs) catalyst. S introduced into the zinc-based zeolitic imidazolate frameworks (ZIF-8) and cobalt-based zeolitic imidazolate frameworks (ZIF-67) precursors via pyrolysis, and induced the generation of ZnS/Co-NSCNTs have been confirmed by XRD, SEM, TEM, and XPS techniques. The key features including activity sites, transfer channels and adsorption energy back up the excellent electrocatalytic activity of the as-prepared ZnS/Co-NSCNTs towards oxygen reduction reactions (ORR). ZnS/Co-NSCNTs additionally exhibited a positive half-wave potential of 0.871 V (vs. RHE) with improved current density towards ORR. In alkaline medium, ZnS/Co-NSCNTs catalyst displayed a high tolerance towards methanol and an excellent long-term cycling stability. The observed onset potential for our prepared ZnS/Co-NSCNTs catalyst is analogous with the commercially available noble metal catalysts. Also, ZnS/Co-NSCNTs catalyst as a cathode in zinc-air battery displayed an enhanced electrochemical performance with a highly specific capacity of 750.1 mAh g−1, outstanding cycling stability, and high rate behavior. This work provides a new approach for the construction of stable low-cost alternative air-cathode catalysts for other energy conversion and storage applications.  相似文献   

10.
11.
The development of highly active oxygen reduction reaction (ORR) catalysts with low-loading of precious metals is imperative but remains a great challenge. Herein, Pd/B,N-CDs@CNT composite catalysts was designed with Pd nanoparticles immobilized on hybrid support composed of B,N-doped carbon dots (B,N-CDs) and the multi-wall carbon nanotubes (CNT) using a simple methanol reduction method. The deposited Pd nanoparticles exhibit clean surface, low crystallinity and surface distortion. The Pd/B,N-CDs@CNT catalyst shows significantly enhanced ORR activity, with the mass activity about 5–6 times higher than that of commercial Pt/C. Thus prominent ORR performance is mainly attributed to the unique microstructure of Pd nanoparticles. Moreover, the composited B,N-CDs and the doped B, N heteroatoms further improve the ORR performance, in which B,N-CDs supply more absorption sites, the formation of N–Pd facilitates the electron transfer, B doping can promote the adsorption of oxygenated species and weaken the strong interaction between Pd and C. Furthermore, the B, N co-doping plays a synergistic effect. This strategy provides a simple and mild method for designing highly efficient electrocatalysts with ultra-low precious metals in alkaline electrolytes.  相似文献   

12.
The heteroatom-doped porous carbon material as an alternative to commercial Pt/C catalysts in oxygen reduction reaction has attracted extensive attention. In this study, the rapeseed meal-based material (ARM-900) prepared by carbonization with high temperature and activation with ZnCl2 had a porous structure and was doped with N and S heteroatoms. Compared to commercial Pt/C catalysts (onset potential of 0.95 V vs. RHE and limiting diffusion current of ?5.7 mA cm?2), ARM-900 demonstrated excellent electrocatalytic performance with an onset potential of 0.98 V vs. RHE and limiting diffusion current of ?8.1 mA cm?2 in O2 saturated 0.1 M KOH solution. Meanwhile, ARM-900 had higher durability and more superior methanol tolerance than Pt/C catalyst. The excellent ORR performance of ARM-900 was derived from the formation of abundant pore structure and the doping of the autochthonous N and S heteroatoms. MFCs with ARM-900 as the cathode had the maximum power density of 808 mW/m2, which was obviously better than Pt/C (709 mW/m2). This study provided an environment-friendly and effective strategy for the reuse of rapeseed meal and the preparation of N and S-doped non-metallic ORR catalysts.  相似文献   

13.
Nitrogen and sulfur dual doped-carbon nanotubes-mesoporous carbon (D-CNTs-MPC) composite is prepared simultaneously and is used in alkaline media as an electrocatalyst for oxygen reduction reaction (ORR). D-CNTs-MPC is synthesized by casting method using nano-CaCO3 as a template, and binuclear cobalt phthalocyanine hexasulfonate as a carbon, nitrogen and sulfur precursor as well as the catalyst for growth of CNTs. D-CNTs-MPC possesses short CNTs adhering to loosely packed carbon with mesopores. Moreover, nitrogen and sulfur are doped into the carbon framework without addition of other heteroatom-containing precursor. The electrochemical behavior shows that D-CNTs-MPC is an active, methanol-tolerant and stable electrocatalyst for ORR.  相似文献   

14.
The key issue of modern electrochemical technology is clean energy production and storage. Proton exchange membrane fuel cells (PEMFC) offer a way to produce electricity from hydrogen, but are hindered by the sluggish reduction of oxygen into water on the cathode, which requires Pt/C catalysts. Iron-nitrogen-carbon (Fe-N-C) catalysts have been shown in recent years to be viable alternatives. Here, we present highly performing Fe-N-C catalysts based on composite materials synthesised from carbide-derived carbon (CDC) and carbon nanotubes (CNT). B4C, Mo2C and TiC, which yield CDC materials with different porosity were chosen as the starting carbides, which are then doped with Fe, N and composited with CNTs using ball-milling and pyrolysis. 1,10-phenanthroline (Phen) and dicyandiamide (DCDA) serve as the nitrogen sources and Fe(II)acetate as the iron source. The catalyst derived from TiC shows a remarkable half-wave potential for oxygen reduction of 0.8 V vs RHE, which shifts negative 36 mV during 5000 potential cycles at 70 °C, while the composite material derived from it is more stable with a shift of only 15 mV during the same period.  相似文献   

15.
16.
The flame synthesis provides a simple low-cost method to produce novel carbon materials. In this study, N, B co-doped carbon (NBC) materials have been prepared by flame synthesis. Among many as-prepared samples, the NBC catalyst which prepared under carbonization temperature of 1000 °C for 3 h with acetonitrile/acetone precursor of 1:1 exhibits the best catalytic activity and stability, as well as good resistance to methanol interference for oxygen reduction reaction (ORR), with half-wave potential being almost nearly to Pt/C, and a quasi-four-electron transfer process. This study would provide an economic, environmental feasible and scalable approach for fabricating novel heteroatom co-doped carbon materials for ORR applications.  相似文献   

17.
The exploration of economical and effective non-noble metal catalysts is essential for oxygen reduction reaction (ORR) in energy devices. Recently, heteroatom-doped metal-organic frameworks (MOFs) have shown great potential in ORR due to their high efficiencies and low costs. Herein, three-dimensional (3D) urchin-like N/S co-doped Mn-based MOFs (U–N/S–Mn-MOFs) as an effective ORR catalyst have been successfully prepared by a facile one-step solvothermal methodology. The unique 3D urchin-like structure with a spherical interior and dendritic exterior may provide more catalytic sites and transport channels for ORR. Simultaneously, the doped N and S combined with Mn can promote oxygen adsorption and reduce the reaction energy barrier. These characteristics endow U–N/S–Mn-MOFs with high ORR performance. The present work provides a new opportunity for multiple heteroatom-doped MOFs to achieve high electrocatalytic performance.  相似文献   

18.
Rational design and synthesis of core-shell bimetallic nanoparticles with tailored structural and functional properties is highly sought to realize clean and energy-efficient fuel cell systems. Herein, PdAu bimetallic nanoparticles (NPs) with core-shell morphology (PdCore–AuShell) were fabricated on the surface of reduced graphene oxide (RGO) support by a facile two-step protocol. In the first step, PdCore–AgShell bimetallic NPs were synthesized on RGO support by reducing Pd2+and Ag+ ions with methyl ammonia borane (MeAB). Later, PdCore–AuShell bimetallic NPs were conveniently fabricated on RGO support via a galvanic replacement strategy involving sacrificial oxidation of metallic silver and reduction of gold ions. The resulting core/shell bimetallic NPs were characterized by X-ray diffraction (XRD), High-resolution transmission electron microscopy (HR-TEM), Energy dispersive X-ray spectroscopy (EDS), Fourier-Transform Infrared Spectroscopy (FT-IR) and cyclic voltrammetry (CV). The electrocatalytic performance of core/shell nanostructures for the room temperature oxygen reduction reaction (ORR) in alkaline media were systematically performed by CV. The electrode-area-normalized ORR activity of RGO-supported PdCore–AuShell NPs was higher than the corresponding commercially available carbon-supported Pt nanoparticles (Pt/C) at ?0.8 V vs Ag/AgCl (satd. KCl) (6.24 vs 5.34 mA cm?2, respectively). Further, methanol-tolerant ORR activities of as-synthesized catalysts were also studied. The Au-on-Pd/RGO bimetallic NPs presented enhanced ORR activity both in presence and in the absence of methanol in comparison with a commercial Pt/C catalyst and as-synthesized Pd/RGO and Au/RGO catalysts. The enhanced catalytic activities of core/shell structures might be resulted owing to the optimized core/shell structure comprising of a small Pd core and a thin Au shell and synergistic effects offered by Pd and Au. The present synthesis protocol demonstrated for two-layer structure can be extended to multi-layered structures with desired functions and activities.  相似文献   

19.
In this work, a facile development of a bi-functional electrocatalyst for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is reported. A composite material comprising of tiny particles of nitrogen doped graphene quantum dots (N-GQDs) embedded into cobalt oxide (Co3O4) flakes is prepared by sodium borohydride reduction method and followed by annealing at 600 °C under inert atmosphere. Structural, morphological and crystalline features are analyzed using FESEM, TEM, HRTEM, XRD and XPS studies. Moreover, optical and fluorescence properties of N-GQDs are studied using UV–visible and fluorescence spectroscopic techniques. These studies clearly reveal and confirm the formation of a composite material. Further electrochemical characteristics toward OER and ORR are investigated by using linear sweep voltammetry (LSV) and cyclic voltammetry (CV) techniques. Compared to the individual entities of pure Co3O4 and N-GQDs alone, the electrocatalytic activity of N-GQDs/Co3O4 composite material is significantly higher towards ORR. Similarly, the same composite material is also used as an electrocatalyst for OER in 0.1 M KOH aqueous electrolyte and it exhibits a lower overpotential of 330 mV to obtain a current density of 10 mA/cm2 along with higher electrocatalytic activity and the reason is mainly attributed to the synergistic effect between N-GQDs and Co3O4. Thus, N-GQDs/Co3O4 composite material is demonstrated to be a high performance bi-functional electrocatalyst for ORR and OER.  相似文献   

20.
Noble metal Pt is the acknowledged efficient catalyst for oxygen reduction (ORR) and hydrogen evolution reaction (HER) in commercial applications. However, due to its high price and limited reserves, its large-scale application is limited. In order to overcome this defect, the loaded Pt nanoparticles (NPs) should be small and dispersed efficiently through the design of electrode materials, so as to improve the utilization efficiency of Pt. In addition, the introduction of non-noble metal active sites can reduce the consumption of Pt efficiently. In this work, hollow graphene spheres are used as the carrier and the heteroatoms (N, Fe and Co) are introduced. The results show that the introduction of Fe and Co can form very effective heteroatom active sites (carbon encapsulated Fe/Co metals and FeCo alloy, and/or metal nitrides Fe/Co-Nx-C) in the substrate material, which improve the catalytic activity of the electrode material effectively and the utilization efficiency of Pt. In addition, the generation of Fe/Co-Nx-C active sites and the loading of Pt are also closely related to the doped N atoms. The onset potential, limiting current density (JL), half-wave potential (E1/2) and Tafel slope of sample FeCo-NxHGSs/Pt (10 wt%) can exceed or comparable to those of commercial catalysts Pt/C (20 wt%) towards ORR both in acid and alkaline electrolyte. Moreover, the values of η100 and the Tafel slope for FeCo-NxHGSs/Pt towards HER can also exceed the commercial catalysts Pt/C (20 wt%) in acid and alkaline electrolytes. The purpose of reducing the usage amount of precious metals without reducing the catalytic performance is realized. The relationship between the ORR and HER performance of the resultant electrode catalyst and the doped heteroatoms, such as nitrogen (N), iron (Fe) and cobalt (Co) atoms, was studied and discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号