首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis of flower-shaped ZnO nanostructures composed of ZnO nanosticks was achieved by the solution process using zinc acetate dihydrate, sodium hydroxide and polyethylene glycol-20000 (PEG-20000) at 180°C for 4 h. The diameter of individual nanosticks was about 100 nm. Detailed structure characterizations demonstrate that the synthesized products are wurtzite hexagonal phase, grown along the [001] direction. The infrared (IR) spectrum shows the standard peak of zinc oxide at 571 cm−1. Raman scattering exhibits a sharp and strong E 2 mode at 441 cm−1 which further confirms the good crystal and wurtzite hexagonal phase of the grown nanostructures.  相似文献   

2.
Zhang X  Zhao M  Yan S  He T  Li W  Lin X  Xi Z  Wang Z  Liu X  Xia Y 《Nanotechnology》2008,19(30):305708
We performed first-principles calculations to study the energetics, geometric and electronic properties of zinc sulfide (ZnS) nanostructures. ZnS nanowires (ZnSNWs), nanotubes (ZnSNTs) and nanosheets (ZnSNSs) were considered. Both ZnSNWs and ZnSNTs modeled using hexagonal prisms with the atomic arrangement displaying the characters of wurtzite crystal are more stable than the single-walled ZnS nanotubes presented in previous literature. The energy evolution of ZnSNWs and ZnSNTs as a function of tube diameter and wall thickness was calculated and explained using a simple model. The comparison between the energetics and electronic structures of these ZnS nanostructures was also addressed.  相似文献   

3.
In this work, synthesis and characterization of core–shell zinc sulphide (ZnS)/zinc oxide (ZnO) nanocomposites has been reported to see the effect of ZnO concentration in core–shell combination. The nascent as well as core–shell nanostructures were prepared by a chemical precipitation method starting with the synthesis of nascent ZnS nanoparticles. The change in morphological and optical properties of core–shell nanoparticles was studied by changing the concentration of ZnO for a fixed amount of ZnS. The nascent ZnS nanoparticles were of 4–6 nm in diameter as seen from TEM, each containing primary crystallites of size 1.8 nm which was estimated from the X-ray diffraction patterns. However, the particle size increases appreciably with the increase in ZnO concentration leading to the well known ZnO wurtzite phase coated with FCC phase of ZnS. Band gap studies were done by UV–visible spectroscopy and it shows that band gap tunability can be achieved appreciably in case of ZnS/ZnO core–shell nanostructures by varying the concentration of ZnO. Fourier transform infrared analysis also proves the formation of core–shell nanostructures. Photoluminescence studies show that emission wavelength blue shifts with the increase in ZnO concentration. These core–shell ZnS/ZnO nanocomposites will be a very suitable material for any type of optoelectronic application as we can control various parameters in this case in comparison to the nascent nanostructures.  相似文献   

4.
To enhance the optical property of zinc oxide (ZnO) thin film, zinc sulfide (ZnS) thin films were formed on the interfaces of ZnO thin film as a passivation and a substrate layer. ZnO and ZnS thin films were deposited by atomic layer deposition (ALD) using diethyl zinc, H2O, and H2S as precursors. Investigations by X-ray diffraction and transmission electron microscopy showed that ZnS/ZnO/ZnS multi-layer thin films with clear boundaries were achieved by ALD and that each film layer had its own polycrystalline phase. The intensity of the photoluminescence of the ZnO thin film was enhanced as the thickness of the ZnO thin film increased and as ZnS passivation was applied onto the ZnO thin film interfaces.  相似文献   

5.
In the present work, we have prepared zinc sulphide (ZnS:Mn)/zinc oxide (ZnO) core–shell nanostructures by a chemical precipitation method and observed the effect of ZnO concentration on the fluorescent nanoparticles. Change in the morphological and optical properties of core–shell nanoparticles have been observed by changing the concentration of ZnO in a core–shell combination with optimum value of Mn to be 1 % in ZnS. The morphological studies have been carried out using X-ray diffraction (XRD) and transmission electron microscopy. It was found that diameter of ZnS:Mn nanoparticles was around 4–7 nm, each containing primary crystallites of size 2.4 nm which was estimated from the XRD patterns. The particle size increases with the increase in ZnO concentration leading to the well-known ZnO wurtzite phase which was coated on the FCC phase of ZnS:Mn. Band gap studies were performed by UV–visible spectroscopy and a red shift in absorption spectra have been observed with the addition of Mn as well as with the capping of ZnO on ZnS:Mn. The formation of core–shell nanostructures have been also confirmed by FTIR analysis. Photoluminescence studies show that emission wavelength is red shifted with the addition of ZnO layer on ZnS:Mn(1 %). These core–shell ZnS:Mn/ZnO nano-composites will be a very suitable material for specific kind of tunable optoelectronic devices.  相似文献   

6.
Low temperature solution synthesis and characterization of ZnO nano-flowers   总被引:1,自引:0,他引:1  
Synthesis of flower-shaped ZnO nanostructures composed of hexagonal ZnO nanorods was achieved by the solution process using zinc acetate dihydrate and sodium hydroxide at very low temperature of 90 °C in 30 min. The individual nanorods are of hexagonal shape with sharp tip, and base diameter of about 300-350 nm. Detailed structural characterizations demonstrate that the synthesized products are single crystalline with the wurtzite hexagonal phase, grown along the [0 0 0 1] direction. The IR spectrum shows the standard peak of zinc oxide at 523 cm−1. Raman scattering exhibits a sharp and strong E2 mode at 437 cm−1 which further confirms the good crystallinity and wurtzite hexagonal phase of the grown nanostructures. The photoelectron spectroscopic measurement shows the presence of Zn, O, C, zinc acetate and Na. The binding energy ca. 1021.2 eV (Zn 2p3/2) and 1044.3 eV (Zn 2p1/2), are found very close to the standard bulk ZnO binding energy values. The O 1s peak is found centered at 531.4 eV with a shoulder at 529.8 eV. Room-temperature photoluminescence (PL) demonstrate a strong and dominated peak at 381 nm with a suppressed and broad green emission at 515 nm, suggests that the flower-shaped ZnO nanostructures have good optical properties with very less structural defects.  相似文献   

7.
Tetrapod-like ZnO nanostructures were fabricated on ZnO-coated sapphire (001) substrates by two steps: pulsed laser deposition (PLD) and catalyst-free thermal evaporation process. First, the ZnO films were pre-deposited on sapphire (001) substrates by PLD. Then the ZnO nanostructures grew on ZnO-coated sapphire (001) substrate by the simple thermal evaporation of the metallic zinc powder at 900 °C in the air without any catalysts. The pre-deposited ZnO films by PLD on the substrates can provide growing sites for the ZnO nanostructures. The as-synthesized ZnO nanostructures were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectrum (FTIR). The results show that the tetrapod-like ZnO nanostructures are highly crystalline with the wurtzite hexagonal structure. Photoluminescence (PL) spectrum of as-synthesized nanostructures exhibits a UV emission peak at ~ 389 nm and a broad green emission peak at ~ 513 nm. In addition, the growth mechanism of ZnO nanostructures is also briefly discussed.  相似文献   

8.
Spindle-like hollow nanostructures of zinc sulfide (ZnS) have been successfully synthesized by hydrothermal process using a simple surfactant emulsion template. The morphologies of ZnS nanostructures were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and field-emission scanning electron microscopy (FE-SEM). It is found that most of the products including twin ellipsoids with connected hollow cores are reminiscent of spindle-like structures. The lengths, widths and the thickness of the shell are in the range of 1-2 μm, 300-450 nm and 20-40 nm, respectively. Selected area electron diffraction (SAED) and X-ray powder diffraction (XRD) patterns show that the shell is composed of sphalerite ZnS polycrystals.  相似文献   

9.
The cathodoluminescence (CL) properties including intensity and distribution of the band to band and defect emission of the flower-like ZnO, ZnO/ZnS core-shell and tube-like ZnS nanostructures have been investigated. It is indicated that the Ultraviolet (UV) emission at 380 nm of the flower-like ZnO nanostructures due to the band to band emission is weaker than their yellow emission at 600 nm induced by interstitial oxygen. Moreover, the UV emission of the ZnO nanorods unevenly distributes from the tip to the end. The UV emission on the tip is stronger than that of others due to the waveguide. On the contrary, the yellow emission at 600 nm is uniform. Furthermore, the UV emission of ZnO has been greatly enhanced and the yellow emission has been inhibited by the formation of ZnO/ZnS core-shell nanostructures in the sulfuration process due to the elimination of interstitial oxygen. However, the polycrystalline tube-like ZnS nanostructures shows the uniform and weak defect emission due to S vacancies.  相似文献   

10.
In this paper, we reported the preparation of ZnO/ZnS core/shell nanocomposites by sulfidation of ZnO nanostructures via a simple hydrothermal method. The precursors of bare ZnO nanoparticles and ZnO nanorods were synthesized by a surfactant-assisted hydrothermal growth. The structural, morphological, and element compositional analysis of bare ZnO nanostructures and ZnO/ZnS core/shell nanocomposites were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy techniques. The XRD results indicated that the phase of bare ZnO nanoparticles and ZnO nanorods was wurtzite structure, and the phase of coated ZnS nanoparticles on the surface of bare ZnO nanostructures was sphalerite structure with the size of about 8 nm. Photoluminescence measurement was carried out, and the PL spectra of ZnO/ZnS core/shell nanocomposites revealed an enhanced UV emission and a passivated orange emission compared to that of bare ZnO nanostructures. In addition, the growth mechanism of ZnO/ZnS core/shell nanostructures through hydrothermal method was preliminarily discussed.  相似文献   

11.
Large quantities of single-crystalline ZnO nanorods and nanotubes have been prepared by the microwave irradiation of a metalorganic complex of zinc, in the presence of a surfactant. The method is simple, fast, and inexpensive (as it uses a domestic microwave oven), and yields pure nanostructures of the hexagonal würtzite phase of ZnO in min, and requires no conventional templating. The ZnO nanotubes formed have a hollow core with inner diameter varying from 140–160 nm and a wall of thickness, 40–50 nm. The length of nanorods and nanotubes varies in the narrow range of 500–600 nm. These nanostructures have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). The ZnO nanorods and nanotubes are found by SAED to be single-crystalline. The growth process of ZnO nanorods and nanotubes has been investigated by varying the surfactant concentration and microwave irradiation time. Based on the various results obtained, a tentative and plausible mechanism for the formation of ZnO nanostructures is proposed.  相似文献   

12.
We report on a controlled synthesis of two novel semiconducting heterostructures: heterocrystalline-ZnS/single-crystalline-ZnO biaxial nanobelts and side-to-side single-crystalline ZnS/ZnO biaxial nanobelts via a simple one-step thermal evaporation method. In the first heterostructure, a ZnS domain is composed of the heterocrystalline superlattice (3C-ZnS) N /(2H-ZnS) M [111]-[0001] with the atomically smooth interface between wurtzite and zinc blende ZnS fragments. High-spatial resolution cathodoluminescence studies on individual heterostructures for the first time reveal a new ultraviolet emission peak ( approximately 355 nm), which is not observed in separate ZnS or ZnO nanostructures. The present hererostructures are expected to become valuable not only with respect to fundamental research but also for a design of new broad-range ultraviolet nanoscale lasers and sensors.  相似文献   

13.
A simple and novel catalyst free (00l) oriented zinc oxide (ZnO) nano-structures were synthesized on quartz substrate by pulsed laser deposition (PLD). The effects of substrate temperature on structural and optical properties of these nanostructures were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL) and spectroscopic ellipsometry. XRD showed that the ZnO nanostructures had c-axis oriented hexagonal wurtzite crystal structure. Crystallite sizes were found to increase as substrate temperature increases. An AFM measurement confirms the grain formation and increase in surface roughness at higher substrate temperature. Optical band gap of these ZnO nanostructures was calculated using transmittance spectra in UV–Vis region and found to decrease from 3.24 to 3.21 eV as substrate temperature is increased from 500 to 800?°C. PL spectra show that all the peaks in UV region around 389 nm; 3.18 eV. The decrease in band gap may be attributed to decrease in oxygen vacancies at higher substrate temperature and may be useful for different applications.  相似文献   

14.
Uniform and ordered pyramidal zinc sulfide (ZnS) nanostructure arrays have been fabricated on the single walled carbon nanotube (SWNT) films by chemical vapor deposition without using any metal catalyst. Each ZnS pyramid has a 100 nm-sized base, a uniform length of 600 nm, and a sharp tip of 10 nm. The control of interspatial distance between ZnS nanostructures was achieved by creation of selective growth on the SWNTs in voids with the assistance of a close-packed silica particle monolayer as a template. Furthermore, this kind of morphology control of nanostructure arrays can play an important role for potential applications, such as high efficiency of field emission because of the strong correlation between shapes and functionalities of nanostructures.  相似文献   

15.
《Materials Letters》2005,59(29-30):3870-3875
Large-quantity of ZnO hexagonal columnar pins are fabricated on a silicon substrate by pyrolysis and oxidation of ZnS powder. We find that each ZnO pin is composed of two parts: a micron-sized hexagonal columnar base, and a tapered hexagonal stalk of 300–500 nm in diameter and 5 μm in length. The entire pin has a hexagonal cross section and grows toward the [0001] direction. Room temperature cathodoluminescence measurement shows that it has a weak near-band edge ultraviolet emission at 383 nm but a strong broad green emission at 527 nm. In sintering, ZnS decomposes to Zn and S. During the growth of these pins, Zn reacts with the incoming O2 to form ZnO. The growth is governed by the vapor–solid mechanism.  相似文献   

16.
Formation of transition-metal sulfide microspheres or microtubes   总被引:1,自引:0,他引:1  
CuxS (x = 1, 2) microtubes, and a series of transition-metal sulfide (CdS, ZnS, NiS, CoS, CuS and Cu2S) compounds microspheres were successfully synthesized through a facile hydrothermal reaction. These compounds have been characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The optical properties of ZnS and CdS have also been investigated by UV–vis absorption and fluorescence spectroscopy. The possible formation mechanism of these microspheres or microtubes was discussed based on the experimental results.  相似文献   

17.
Zinc sulfide nanoflowers are synthesized by the composite-hydroxide-mediated (CHM) method, using molten composite hydroxides as a reaction solvent, sodium sulfide and zinc nitrate hexahydrate as reactants at temperature of 200?°C in the absence of organic dispersant or capping agents. The XRD spectrum of the as-synthesized sample indicates a cubic ZnS with lattice group \(F\bar{4}3m[216]\) and lattice constant a=5.318 Å. The scan electron microscopy and transmission electron microscopy display its good crystallization and flower shape with diameter of 800–1000 nm. The photoluminescence results reveal that the ZnS nanocrystal has a band gap of 3.4 eV. The strong blue emission centered at 440 nm demonstrates the existence of defect states. This CHM approach provides a useful route for the synthesis of ZnS crystals, which may be extended to synthesize other II–VI semiconductors.  相似文献   

18.
Mass production of uniform wurtzite ZnS nanostructures has been achieved by a H2-assisted thermal evaporation technique. X-ray diffraction (XRD) analyses, scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) observations show that the ZnS nanostructures consist of nanobelts, nanosheets with a hexagonal wurtzite structure. The as-synthesized nanobelts have a length of several tens of micrometers and a width of several hundreds of nanometers. Self-catalytic vapor-liquid-solid (VLS) growth and vapor-solid (VS) growth are proposed for the formation of the ZnS nanostructures because neither a metal catalyst nor a template was introduced in the synthesis process. Room-temperature photoluminescence measurement indicates that the synthesized ZnS nanostructures have a strong emission band at a wavelength of 443 nm, which may be attributed to the presence of various surface states.  相似文献   

19.
Pure zinc-oxide and a composition of zinc oxide-single walled carbon nanotubes (ZnO-SWCNTs) thin films were prepared by using a sol–gel doctor blade technique. A precursor of zinc acetate dehydrate (Zn(CH3COO)2·2H2O), absolute ethanol (C2H5OH) and triethanolamine were mixed in one solution. Non-acid treatment SWCNTs were doped in the prepared solution. Structural and morphological properties of ZnO and ZnO-SWCNTs thin films were studied by means of X-ray diffractometer (XRD), field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM). XRD measurements indicated that the crystallite size of ZnO was bigger than the crystallite size of ZnO-SWCNTs; 0.4331 and 0.3386 nm, respectively. The FESEM images showed the hexagonal and nanorod structures of ZnO thin film and a broccoli-like ZnO nanostructures coated with CNTs for ZnO-SWCNTs thin film. The AFM analysis revealed smoother surface morphology of ZnO-SWCNTs thin film compared to the surface of pure ZnO thin film. TEM results captured the inner structures of ZnO and ZnO-SWCNTs. Inner and outer diameter of non-acid treatment SWCNTs were recorded about 5.09 and 14.95 nm, respectively. Photovoltaic performance of ZnO-SWCNTs based dye-sensitized solar cell (DSSC) showed high power conversion efficiency of 0.102 % compared to ZnO based DSSC (0.019 %). This study suggests that SWCNTs should be acid-treated to produce highly porous structure and greater surface area for better photovoltaic performance of the DSSCs.  相似文献   

20.
In this paper reports a facile hydrothermal synthesis, characterization and sensing application of zinc oxide (ZnO) nanostructures. ZnO nanostructures were synthesized by mixing triethylamine (TEA) with zinc nitrate at 60?°C followed by calcination at 650?°C for 6 h. The detailed characterizations conformed the synthesized ZnO nanostructures. Powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and Raman spectral analysis confirmed the formation of hexagonal ZnO. Band gap of the ZnO nanoparticles was determined by UV–visible absorption spectroscopy. Morphology and size of the sample was examined by field emission scanning electron microscopy (FE-SEM) and high resolution transmission electron microscopy (HR-TEM). It shows that the sample has rod and hexagonal morphology. Elemental composition was determined by energy dispersive X-ray (EDX) spectroscopy. The ZnO was coated on glassy carbon electrode (ZnO/GCE) and it was utilized as an electrochemical sensor for 4-nitrophenol (4-Np). Sensitivity and detection limit of ZnO/GCE towards 4-Np was found to be 0.04 µA/mM and 2.09?×?10?5 M. The result suggests that ZnO has suitable sensor detection of 4-Np.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号