首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In this paper, modeling, control and power management (PM) of hybrid Photovoltaic Fuel cell/Battery bank system supplying electric vehicle is presented. The HPS is used to produce energy without interruption. It consists of a photovoltaic generator (PV), a proton exchange membrane fuel cell (PEMFC), and a battery bank supplying an electric vehicle of 3 kW. In our work, PV and PEMFC systems work in parallel via DC/DC converter and the battery bank is used to store the excess of energy. The mathematical model topology and it power management of HPS with battery bank system supplying electric vehicle (EV) are the significant contribution of this paper. Obtained results under Matlab/Simulink and some experimental ones are presented and discussed.  相似文献   

2.
This work highlights the gains of a fast nonlinear model-based predictive control (NMPC) scheme applied to a 10 kW proton exchange membrane fuel cell (PEMFC). The freshness of the approach is based on a particular parameterization of the control action to decrease the optimization problem dimension. Due to its short computational time, its reliability and its low sensitivity to noise, an artificial neural network (ANN) model is designed and used as a predictive model.  相似文献   

3.
The proton exchange membrane fuel cell (PEMFC) stack is a key component in the fuel cell/battery hybrid vehicle. Thermal management and optimized control of the PEMFC under real driving cycle remains a challenging issue. This paper presents a new hybrid vehicle model, including simulations of diver behavior, vehicle dynamic, vehicle control unit, energy control unit, PEMFC stack, cooling system, battery, DC/DC converter, and motor. The stack model had been validated against experimental results. The aim is to model and analyze the characteristics of the 30 kW PEMFC stack regulated by its cooling system under actual driving conditions. Under actual driving cycles (0–65 kW/h), 33%–50% of the total energy becomes stack heat; the heat dissipation requirements of the PEMFC stack are high and increase at high speed and acceleration. A PID control is proposed; the cooling water flow rate is adjusted; the control succeeded in stabilizing the stack temperature at 350 K at actual driving conditions. Constant and relative lower inlet cooling water temperature (340 K) improves the regulation ability of the PID control. The hybrid vehicle model can provide a theoretical basis for the thermal management of the PEMFC stack in complex vehicle driving conditions.  相似文献   

4.
The inherent properties of artificial neural networks (ANNs) such as low sensitivity to noise and incomplete information make the ANN a promising candidate to model the fuel cell system. In this paper, an ANN-based model of 100 W portable direct hydrogen fed proton exchange membrane fuel cell (PEMFC) is presented. The model is built based on experimentally collected data from a portable 100 W direct hydrogen fed PEMFC in the authors’ laboratory. A multilayer feedforward ANN with back-propagation training algorithm is used to model the portable PEMFC. The ANN consists of fully connected four layers network with two hidden layers. The PEMFC ANN model is trained using extracted data from experimentally measured and calculated parameters. To validate the model, the outputs of the PEMFC ANN are compared against experimental data and results from a dynamic model of portable direct hydrogen fed PEMFC. In addition, three statistical indices to measure variations, unbiasedness (precision), and accuracy in voltage, power, and hydrogen flow are used to evaluate the PEMFC ANN model performance. The indices indicate that the maximum variations, unbiasedness, and accuracy of the voltage, power, and hydrogen flow are 1.45%, 2.04%, and 1.90%, respectively, which shows a close agreement between the outputs of the PEMFC ANN and the experimental results.  相似文献   

5.
Hydrogen enrichment on diesel engines is a proven solution for both minimizing the undesirable emissions and fuel consumptions. Also, hybrid electric vehicles which manufactured for the same goal too, are playing an important movement during three decades in transportation sector. The combination of these two common-purpose technologies will give possibility to production of hybrid electric vehicles which have hydrogen-enriched internal combustion engine, in the near future.At this study, four type modelled vehicle; stock diesel vehicle (V1), hydrogen enrichment diesel vehicle (V2), hybrid electric vehicle which contains same diesel engine (V3) and hybrid electric vehicle that powered by hydrogen enrichment diesel engine (V4); simulated with AVL simulation tools for compared the performance and emission values, for the first time. V1 is outfitted by 3.0 L diesel engine. V2 is the hydrogen enriched version of V1 which hydrogen addition is conducted via intake manifold with 8% (vol/vol) enrichment. V1 and V2 were simulated under AVL Boost tool for analyzing the effects of hydrogen addition clearly. After that, V3 and V4 were modelled with AVL Cruise. V3 and V4 were coupled an electric motor (30 kW) with appropriate battery. In terms of performance and emissions results, vehicle types with hydrogen enriched diesel engines were given promising outputs when compared with without ones. In particular, V4 has revealing excellent performance. Under this study's circumstances, when compared V4 between stock one, 4.26% improvement was achieving on vehicle performance parameters. Additionally, the combined fuel consumption, NOx emission and CO2 emission decreases with 14.32%, 15% and 33% respectively, for comparison between V4 and V1.  相似文献   

6.
Hydrogen is the most abundant element in the world and produces only water vapor as a result of chemical reaction that occurred in fuel cells. Therefore, fuel cell electric vehicles, which use hydrogen as fuel, continue its growing trend in the sector. In this study, an energy distribution comparison is carried out between fuel cell electric vehicle and fuel cell hybrid electric vehicle. Hybridization of fuel cell electric vehicle is designed by equipped a traction battery (15 kW). Modeled vehicles were prepared under AVL Cruise program with similar chassis and same fuel cell stacks for regular determining process. Numerical analyses were presented and graphed with instantaneous results in terms of sankey diagrams with a comparison task. WLTP driving cycle is selected for both vehicles and energy input/output values given with detailed analyses. The average consumption results of electric and hydrogen usage is found out as 4.07 kWh and 1.125 kg/100 km respectively for fuel cell electric vehicle. On the other hand, fuel cell hybrid electric vehicle’s average consumption results figured out as 3.701 kWh for electric and 0.701 kg/100 km for hydrogen consumption. As a result of this study, fuel cell hybrid electric vehicle was obtained better results rather than fuel cell electric vehicle according to energy and hydrogen consumption with 8% and 32%, respectively.  相似文献   

7.
The hydrogen proton exchange membrane (PEM) fuel cells are promising to utilize fuel cells in electric vehicle (EV) applications. However, hydrogen PEM fuel cells are still encountering challenges regarding their functionality and degradation mechanism. Therefore, this paper aims to study the performance of a 3.2 kW hydrogen PEM fuel cell under accelerated operation conditions, including varying fuel pressure at a level of 0.1–0.5 bar, variable loading, and short-circuit contingencies. We will also present the results on the degradation estimation mechanism of four fuel cells working at different operational conditions, including high-to-low voltage range and high-to-low temperature variations. These experiments examine over 180 days of continuous fuel cell working cycle. We have observed that the drop in the fuel cells' efficiency is at around 7.2% when varying the stack voltage and up to 14.7% when the fuel cell's temperature is not controlled and remained at 95 °C.  相似文献   

8.
《Journal of power sources》2005,145(2):604-609
Optimal design and proper operation is important to get designed output power of a polymer electrolyte membrane fuel cell (PEMFC) stack. The air-cooling fuel cell stack is widely used in sub kW PEMFC systems. The purpose of this study is to analyze the operating conditions affecting the performance of an air-cooling PEMFC which is designed for portable applications. It is difficult to maintain well balanced operating conditions. These parameters are the relative humidity, the temperature of the stack, the utility ratio of the reactant gas and so on. In this study a 500 W rate air-cooling PEMFC was fabricated and tested to evaluate the design performance and to determine optimal operating conditions. Moreover, basic modeling also is carried out. These results can be used as design criteria and optimal operating conditions for portable PEMFCs.  相似文献   

9.
In order to improve the power generation efficiency of fuel cell systems employing liquid fuels, a hybrid system consisting of solid oxide fuel cell (SOFC) and proton exchange membrane fuel cell (PEMFC) is proposed. Utilize the high temperature heat generated by SOFC to reform as much methanol as possible to improve the overall energy efficiency of the system. When SOFC has a stable output of 100 kW, the amount of hydrogen after reforming is changed by changing the methanol flow rate. Three hybrid systems are proposed to compare and select the best system process suitable for different situations. The results show that the combined combustion system has the highest power generation, which can reach 350 kW and the total electrical efficiency is 57%. When the power of the tail gas preheating system is 160 kW, the electrical efficiency can reach 75%. The PEM water preheating system has the most balanced performance, with the electric power of 300 kW and the efficiency of 66%.  相似文献   

10.
An ejector primary gas flow control solution based on three solenoid valves is designed, implemented and tested in a 5 kW proton exchange membrane fuel cell (PEMFC) system with ejector-based anode gas recirculation. The robust and cost effective combination of the tested flow control method and a single ejector is shown to achieve adequate anode gas recirculation rate on a wide PEMFC load range.In addition, the effect of anode gas inert content on ejector performance in the 5 kW PEMFC system is studied at varying load and anode pressure levels. Results show that increasing the inert content increases recirculated anode gas mass flow rate but decreases both the molar flow rate and the anode inlet humidity.Finally, the PEMFC power ramp-rate limitations are studied using two fuel supply strategies: 1) advancing fuel supply and venting out extra fuel and 2) not advancing fuel supply but instead using a large anode volume. Results indicate that the power of the present PEMFC system can be ramped from 1 kW to 4.2 kW within few hundred milliseconds using either of these strategies.  相似文献   

11.
This paper develops robust control and power management strategies for a 6 kW stationary proton exchange membrane fuel cell (PEMFC) hybrid power system. The system consists of two 3 kW PEMFC modules, a Li–Fe battery set, and electrical components to form a parallel hybrid power system that is designed to supply uninterruptible power to telecom base stations during power outages. The study comprises three parts: PEMFC control, power management, and system integration. First, we apply robust control to regulate the hydrogen flow rates of the PEMFC modules in order to improve system stability, performance, and efficiency. Second, we design a parallel power train that consists of two PEMFC modules and one Li–Fe battery set for the uninterruptible power supply (UPS) requirement. Lastly, we integrate the system for experimental verification. Based on the results, the proposed robust control and power management are deemed effective at improving the stability, performance, and efficiency of the stationary power system.  相似文献   

12.
This paper presents the results obtained on the research project CIT-370000-2008-11, entitled “Multi-purpose remote-controlled all-wheel-drive tool-vehicle powered by fuel cells” funded by the Spanish Ministry of Science and Technology. A new concept multipurpose electric vehicle has been designed and manufactured, based on three basic features: a hybrid power system consisting in PEM fuel cells + batteries, an all-wheel-drive traction system, and the capability of being either on-site driven or remote-controlled. The vehicle is formed by two frames connected by a two-degree of freedom joint, and is powered by two 2.5 kW DC motors, one in each axle. All the electric circuits for the suitable control of the power hybrid system have been developed in our Laboratory, allowing a large flexibility. After the different tests performed, it has been verified that the vehicle presents good maneuverability, a good traction performance in off-road driving, as well as a good slope-climbing capability. Under the experimental conditions tested, the vehicle reached a maximum speed of 11 km/h on flat surface, keeping the maximum power consumption always around 3 kW.  相似文献   

13.
This paper presents the utilization of a supercapacitor (SC) as an auxiliary power source in an electric vehicle (EV), composed of a proton electrolyte membrane fuel cell (PEMFC) as the main energy source. The main weak point of PEMFC is slow dynamics because one must limit the fuel cell current slope in order to prevent fuel starvation problems, to improve its performance and lifetime. The very fast power response and high specific power of a supercapacitor can complement the slower power output of the main source to produce the compatibility and performance characteristics needed in a propulsion system. DC-DC converters connected to the hybrid source ensure a constant voltage value in inverters inputs. After an architecture presentation of the hybrid energy source, two parallel-type configurations are explored in more detail. For each of them, the energy flow control and management, validated simulation shows the performance obtained in this configuration. The hybrid source management is based primarily on the intervention of the supercapacitor in fugitives' schemes such as slopes, different speeds and rapid acceleration. Secondly, the PEMFC intervenes to guarantee the power in permanent regime. Finally, simulation results considering energy management are presented and illustrated the hybrid energy source benefits.  相似文献   

14.
The road testing and demonstration of a three-wheeler vehicle driven by a 5 kW proton exchange membrane fuel cell (PEMFC) was carried out in the absence and presence of lead acid batteries. Prior to integrating the PEMFC module and batteries in the three-wheeler, they were tested and demonstrated separately. The PEMFC module had a very fast response as the load was manually or, especially, automatically changed and it could supply a continuous power when the reactant was supplied continuously. In contrast, the 5 kW lead acid batteries alone could supply power for no longer than 300 s. In the presence of both the PEMFC module and batteries, when the drawing power was in the range of the PEMFC module capacity the propulsion motor gained its energy from the PEMFC module only, whilst the stack power output at all conditions was greater than the setting power of approximately 400 W. After integrating the PEMFC module and batteries into the three-wheeler, both energy sources were found to power the vehicle effectively. The motor power as well as the stack power changed as a linear proportion to the throttle. The motor consumed more power in case of high speed driving, take off or hill climbing, while it used only 0.354 kW in the absence of throttle. The hybrid system can achieve a maximum speed in this three-wheeler of around 24.9 km/h with a hydrogen consumption of 11 g H2/km (71 g H2/kWh) and an operating cost of 1.99 USD/km. The thermodynamic efficiency of the vehicle was 42.9%.  相似文献   

15.
The performance of proton exchange Membrane fuel cell (PEMFC) fault diagnosis system plays an important role in normal operation of PEMFC. Therefore, a new fault diagnosis algorithm based on binary matrix encoding neural network called BinE-CNN is proposed. In BinE-CNN, high-dimensional features are extracted through binary encoding, and the feature maps are transferred to a convolutional neural network (CNN) to realize seven-category fault classification. For development of BinE-CNN, a PEMFC model is modeled to generate simulative datasets. Simulative test precision and Frames per second (FPS) of BinE-CNN have reached respectively 0.973 and 999.8 (better than support vector machines (SVM), long short-term memory neural network (LSTM), etc.). In experimental verification section, fault datasets are collected during bench test. After that, BinE-CNN is deployed on vehicle control unit (VCU) to verify its engineering value (real-time and precision). The result meet both requirements, with time cost of 96.15 ms and precision of 0.931.  相似文献   

16.
Proton exchange membrane fuel cell (PEMFC) electric vehicle is an effective solution for improving fuel efficiency and onboard emissions, taking advantage of the high energy density and short refuelling time. However, the higher cost and short life of the PEMFC system and battery in an electric vehicle prohibit the fuel cell electric vehicle (FCEV) from becoming the mainstream transportation solution. The fuel efficiency-oriented energy management strategy (EMS) cannot guarantee the improvement of total operating costs. This paper proposes an EMS to minimize the overall operation costs of FCEVs, including the cost of hydrogen fuel, as well as the cost associated with the degradations of the PEMFC system and battery energy storage system (ESS). Based on the PEMFC and battery performance degradation models, their remaining useful life (RUL) models are introduced. The control parameters of the EMS are then optimized using a meta-model based global optimization algorithm. This study presents a new optimal control method for a large mining truck operating on a real closed-road operation cycle, using the combined energy efficiency and performance degradation cost measures of the PEMFC system and lithium-ion battery ESS. Simulation results showed that the proposed EMS could improve the total operating costs and the life of the FCEV.  相似文献   

17.
This paper describes the development of a hybrid Proton Exchange Membrane Fuel Cell (PEMFC) electric vehicle consisting of a 3 kW PEMFC, PV arrays, secondary battery sets, and a chemical hydrogen generation system. We first integrate a hybrid PEMFC electric vehicle and design power management strategies. The on-board hydrogen generation system can provide sufficient hydrogen for continuous operation of the PEMFC, and the performance tests demonstrate the effectiveness of the integrated system in providing sustainable power for driving. We then use Matlab/SimPowerSystem? to develop a simulation model and adjust the model parameters using experimental data. The results indicated that the model can effectively predict system responses and can be used for performance evaluation. We also use the simulation model to estimate the mileage and costs of the developed electric vehicle, and we discuss the impacts of component sizes on system costs and travelling ranges.  相似文献   

18.
In the present study, the new environmentally-compatible vehicle was designed to mitigate urban warming, air pollution and carbon dioxide (CO2) emissions in the urban area. Principal specifications for its optimal design will be clarified and it will be shown that urban environment is improved with dissemination of such vehicles. First, we evaluate optimal specifications of the new conceptual hybrid EV (Electric Vehicle) equipped with the flywheel and photovoltaic (PV) cell and also report the results of the driving simulation of the proposed vehicles. The energy density of the flywheel made of Carbon Fiber Reinforced Plastics (CFRP) is three times higher than Pb battery, which has been used for the EVs. The most noticeable feature of the flywheel is that it has very high charging rate. By employing the flywheel and PV cell as energy regeneration, the electric power consumption rate of the vehicle can be 188 km/l in the community-driving schedule, and over 50 km/l in the long-driving schedules (the electric power consumption rate is converted to the fuel consumption rate of gasoline). Furthermore, three-dimensional computer simulation of urban atmosphere is conducted and it is shown that the dissemination of the proposed vehicle reduce the concentration of CO2 in the urban area and mitigate urban warming.  相似文献   

19.
The proton exchange membrane fuel cell (PEMFC) flow channel structure obviously affects the reaction gas distribution and electrochemical reactions. In this study, the imitated water-drop block heights and widths within the channel are optimized for better PEMFC performance. A machine learning-based Bagging neural network is applied for the first time to predict PEMFC output performance based on different block structure parameters. First, the proposed imitated water-drop block height and width are optimized by changing parameters. Then, a database is established. Finally, after the Bagging model is validated, the performance is compared with the back-propagation (BP) neural network. Results indicate that the mass transfer and the electrochemical reaction are improved under the optimal width and height of imitated water-drop block for PEMFC. The Bagging prediction model uses less training data to obtain high-precision prediction results in 10 s. The performance prediction model can effectively improve the efficiency of channel optimization.  相似文献   

20.
Imperial Racing Green is an undergraduate teaching project at Imperial College London. Undergraduate engineers have designed, built and raced hydrogen fuel cell hybrid vehicles in the Formula Zero and Formula Student race series. Imperial Racing Green has collaborated with its fuel cell partners to develop a 13 kW automotive polymer electrolyte membrane fuel cell (PEMFC) system. A team of undergraduate engineers were given a relatively modest budget and less than 8 months to design and assemble an operational high-power PEMFC system. The fuel cell system was designed to provide the average power required by the team's 2011 Formula Student entry. This paper presents the team's experience of developing and testing an automotive fuel cell system for a race application and plans for its future development and integration onto the vehicle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号