首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen has attracted much attention as a next-generation energy resource. Among various technologies, one of the promising approaches for hydrogen production is the use of the reaction between Si and water, which does not require any heat, electricity, and light energy as an input. Notwithstanding the usefulness of Si as a prospective raw material of hydrogen production, the manufacturing process of Si requires a significant amount of energy. Therefore, as an alternative to pure Si, this study used a wasted Si sludge, generated though the manufacturing process of Si wafer, for the direct reuse. Thus, the Si-water reaction for the hydrogen generation was investigated in comparison with pure Si and Si sludge by employing X-ray absorption near edge structure (XANES) to evaluate the feasibility of hydrogen production with the use of Si sludge and to identify the influence of impurities contained in Si sludge. As a result, hydrogen was not produced with the use of Si sludge because of containing Al compound as the impurity. Through the XANES analysis, the formation of SiO(OH)2 was found as core-shell structure, which potentially would hinder the hydrogen generation.  相似文献   

2.
Under certain conditions, cyanobacteria can switch from photosynthesis to hydrogen production, which is a good energy carrier. However, the biological diversity of hydrogen-releasing cyanobacteria has a great unexplored potential. This study is aimed to investigate the ability of new strains of cyanobacteria Cyanobacterium sp. IPPAS B-1200, Dolichospermum sp. IPPAS B-1213, and Sodalinema gerasimenkoae IPPAS B-353 to release H2 and to evaluate the effects of photosystem II inhibitor 3-(3,4-dichlorphenyl)-1,1-dimethylurea (DCMU) on H2 production under light and dark conditions. The results showed that cultures treated with DCMU produced several times more H2 than untreated cells. The highest rate of H2 photoproduction of 4.24 μmol H2 (mg Chl a h)?1 was found in a Dolichospermum sp. IPPAS B-1213 culture treated with 20 μM DCMU.  相似文献   

3.
Due to the increasingly serious environmental issues and continuous depletion of fossil resources, the steel industry is facing unprecedented pressure to reduce CO2 emissions and achieve the sustainable energy development. Hydrogen is considered as the most promising clean energy in the 21st century due to the diverse sources, high calorific value, good thermal conductivity and high reaction rate, making hydrogen have great potential to apply in the steel industry. In this review, different hydrogen production technologies which have potential to provide hydrogen or hydrogen-rich gas for the great demand of steel plants are described. The applications of hydrogen in the blast furnace (BF) production process, direct reduction iron (DRI) process and smelting reduction iron process are summarized. Furthermore, the functions of hydrogen or hydrogen-rich gas as fuels are also discussed. In addition, some suggestions and outlooks are provided for future development of steel industry in China.  相似文献   

4.
The need for a rapid transformation to low-carbon economies has rekindled hydrogen as a promising energy carrier. Yet, the full range of environmental consequences of large-scale hydrogen production remains unclear. Here, prospective life cycle analysis is used to compare different options to produce 500 Mt/yr of hydrogen, including scenarios that consider likely changes to future supply chains. The resulting environmental and human health impacts of such production levels are further put into context with the Planetary Boundaries framework, known human health burdens, the impacts of the world economy, and the externality-priced production costs that embody the environmental impact. The results indicate that climate change impacts of projected production levels are 3.3–5.4 times higher than the allocated planetary boundary, with only green hydrogen from wind energy staying below the boundary. Human health impacts and other environmental impacts are less severe in comparison but metal depletion and ecotoxicity impacts of green hydrogen deserve further attention. Priced-in environmental damages increase the cost most strongly for blue hydrogen (from ~2 to ~5 USD/kg hydrogen), while such true costs drop most strongly for green hydrogen from solar photovoltaic (from ~7 to ~3 USD/kg hydrogen) when applying prospective life cycle analysis. This perspective helps to evaluate potentially unintended consequences and contributes to the debate about blue and green hydrogen.  相似文献   

5.
Hydrogen as an energy storage medium is considered an effective solution to the problem of the intermittent availability of renewable and innovative energies. This study focused on improving the efficiency of an indirectly coupled photovoltaic-electrolyzer (PVE) system using an improved maximum power point tracking (IMPPT) technique. The IMPPT is based on a neural current estimator and a variable step size (VSS) technique. The neural network-based current estimator is employed to estimate the short circuit current (Isc) quickly and directly without the need for periodic disconnection of the PV system, which in turn, reduces the losses resulting from the measurement process. The VSS technique is used to achieve an optimal adjustment of the duty cycle. The accurate electrical model of the PVE system was simulated in MATLAB/Simulink environment. The system performance was evaluated for one day using actual radiation data of Zonguldak City on June 19, 2021. Simulation results show that using the proposed IMPPT system, the PVE system achieves higher performance compared to using both P&O-based MPPT and directly coupled mode. Assuming an ideal electrolyzer, the efficiencies of the PVE system were about 91% using the IMPPT, 67% using the P&O-based MPPT, and 45% using the directly coupled mode. This demonstrates that the proposed system exhibits superior performance and increases hydrogen production efficiency compared to directly coupled PVE systems that need fine-tuning of system parameters.  相似文献   

6.
A techno-economic study is performed for a large scale combustion-less hydrogen production process based on Steam Methane Reforming (SMR). Two process versions relying on different renewable heat sources are compared: (1) direct solar heating from a concentrated solar power system, and (2) radiation from resistive electrical heaters (electric SMR). Both processes are developed around an integrated micro-reactor technology, incorporating in a monolithic block most sub-processes needed to perform SMR. A baseline techno-economic scenario with low-cost feedstock and electricity, priced at $4/MMBtu and $0.04/kWh respectively, results in an LCOH of $2.31/kgH2 for solar SMR and $1.59/kgH2 for electric SMR. Results further show that solar SMR is currently more attractive economically than electric SMR coupled with distributed wind power systems, but electric SMR is more favourable in the long term due to the expected future improvements in the LCOE and capacity factor of wind power systems.  相似文献   

7.
Transitioning German road transport partially to hydrogen energy is among the possibilities being discussed to help meet national climate targets. This study investigates impacts of a hypothetical, complete transition from conventionally-fueled to hydrogen-powered German transport through representative scenarios. Our results show that German emissions change between ?179 and +95 MtCO2eq annually, depending on the scenario, with renewable-powered electrolysis leading to the greatest emissions reduction, while electrolysis using the fossil-intense current electricity mix leads to the greatest increase. German energy emissions of regulated pollutants decrease significantly, indicating the potential for simultaneous air quality improvements. Vehicular hydrogen demand is 1000 PJ annually, requiring 446–525 TWh for electrolysis, hydrogen transport and storage, which could be supplied by future German renewable generation, supporting the potential for CO2-free hydrogen traffic and increased energy security. Thus hydrogen-powered transport could contribute significantly to climate and air quality goals, warranting further research and political discussion about this possibility.  相似文献   

8.
The catalysts used to facilitate the water gas shift reaction (WGSR) are generally harmful to the environment. Therefore, catalysts that have high activity and stability in WGSR and do not pollute the environment need to be fabricated. Herein, three promoters (La, Pr, and Zr) are added into Co–CeO2 (CoCe) catalyst to improve catalytic performance in a high temperature WGSR to produce high-purity hydrogen from waste-derived synthesis gas. Various techniques are employed to confirm the changes in the properties that affect the catalytic performance. The catalytic reaction is performed at a high gas hourly space velocity to screen the performance of the promoted CoCe catalysts. The CoCeZr catalyst shows the highest CO conversion (XCO = 88% at 450 °C) due to its high Co dispersion and oxygen vacancy resulting from the addition of Zr to the CoCe catalyst; thus, it is most suitable for use in high temperature WGSR.  相似文献   

9.
The metal organic frameworks (MOFs) supported Pd catalysts for H2 generation from formic acid (FA) were synthesized in this work, via a facile excessive impregnation-low temperature reduction approach. Among the synthetic catalysts, 10% Pd/MOF-Cr (18) displayed a remarkable performance for catalyzing FA dehydrogenation in additive-free aqueous solution, and the corresponding TOFmid achieved 537.8 h?1 at 323 K. Furthermore, the bimetallic Ni–Pd alloy catalysts were prepared by the introduction of Ni in the subsequent work. Fortunately, 10% Ni0.4Pd0.6/MOF-Cr was found to be a highly active and fairly durable catalyst, exhibiting a TOFmid as high as 737.9 h?1 at 323 K with almost 100% XFA (final) and SH2, and remained 94% of its original activity in the third cyclic catalysis. Meanwhile, Ni was discovered to be indispensable in increasing the electron density of Pd, downsizing the immobilized metal particles and inhibiting the agglomeration of the loaded nanoparticles.  相似文献   

10.
Hydrogen can be a promising clean energy carrier for the replenishment of non-renewable fossil fuels. The set back of hydrogen as an alternative fuel is due to its difficulties in feasible storage and safety concerns. Current hydrogen adsorption technologies, such as cryo-compressed and liquefied storage, are costly for practical applications. Metal-organic frameworks (MOFs) are crystalline materials that have structural versatility, high porosity and surface area, which can adsorb hydrogen efficiently. Hydrogen is adsorbed by physisorption on the MOFs through weak van der Waals force of attraction which can be easily desorbed by applying suitable heat or pressure. The strategies to improve the MOFs surface area, hydrogen uptake capacities and parameters affecting them are studied. Hydrogen spill over mechanism is found to provide high-density storage when compared to other mechanisms. MOFs can be used as proton exchange membranes to convert the stored hydrogen into electricity and can be used as electrodes for the fuel cells. In this review, we addressed the key strategies that could improve hydrogen storage properties for utilizing hydrogen as fuel and opportunities for further growth to meet energy demands.  相似文献   

11.
Hydrogen has attracted attention worldwide with its favourable inherent properties to contribute towards a carbon-free green energy future. Australia aims to make hydrogen as its next major export component to economize the growing global demand for hydrogen. Cost-effective and safe large-scale hydrogen storage in subsurface geology can assist Australia in meeting the projected domestic and export targets. This article discusses the available subsurface storage options in detail by first presenting the projected demand for hydrogen storage. Australia has many subsurface formations, such as depleted gas fields, salt caverns, aquifers, coal seams and abandoned underground mines, which can contribute to underground hydrogen storage. The article presents basin-wide geological information on the storage structures, the technical challenges, and the factors to consider during site selection. With the experience and knowledge Australia has in utilizing depleted reservoirs for gas storage and carbon capture and sequestration, Australia can benefit from the depleted gas reservoirs in developing hydrogen energy infrastructure. The lack of experience and knowledge associated with other geostructures favours the utilization of underground gas storage sites for the storage of hydrogen during the initial stages of the shift towards hydrogen energy. The article also provides future directions to address the identified important knowledge gaps to utilize the subsurface geology for hydrogen storage successfully.  相似文献   

12.
In this study, design and performance analysis is carried out for a 10 kWh metal hydride based hydrogen storage system. The system is equipped with distinctive aluminium hexagonal honeycomb based heat transfer enhancements (HTE) having higher surface area to volume ratio for effective heat transfer combined with low system weight addition. The system performance was studied under different operating conditions. The optimum absorption condition was achieved at 35 bar with water at room temperature as heat transfer fluid where up to 90% absorption was completed in 7200 s. The performance of the reactor was observed to significantly improve upon the addition of the HTE network at a minimal system weight penalty.  相似文献   

13.
Cell immobilization and co-culture techniques have gained attention due to its potential to obtain high volumetric hydrogen productivities (QH2). Chitosan retained biomass in the fermentation of co-cultures of Caldicellulosiruptor saccharolyticus and C. owensensis efficiently, up to a maximum dilution rate (D) of 0.9 h?1. Without chitosan, wash out of the co-culture occurred earlier, accompanied with approximately 50% drop in QH2 (D > 0.4 h?1). However, butyl rubber did not show as much potential as carrier material; it did neither improve QH2 nor biomass retention in continuous culture. The population dynamics revealed that C. owensensis was the dominant species (95%) in the presence of chitosan, whereas C. saccharolyticus was the predominant (99%) during cultivation without chitosan. In contrast, the co-culture with rubber as carrier maintained the relative population ratios around 1:1. This study highlighted chitosan as an effective potential carrier for immobilization, thereby paving the way for cost – effective hydrogen production.  相似文献   

14.
15.
The production of hydrogen through water electrolysis is a promising pathway to decarbonize the energy sector. This paper presents a techno-economic model of electrolysis plants based on multiple states of operation: production, hot standby and idle. The model enables the calculation of the optimal hourly dispatch of electrolyzers to produce hydrogen for different end uses. This model has been tested with real data from an existing installation and compared with a simpler electrolyzer model that is based on two states. The results indicate that an operational strategy that considers the multi-state model leads to a decrease in final hydrogen production costs. These reduced costs will benefit businesses, especially while electrolysis plants grow in size to accommodate further increases in demand.  相似文献   

16.
Applicability of multiwall carbon nanotubes (MWCNTs) decorated with palladium nanoparticles as sensitive layer in a resistive microsensor for identification of hydrogen isotopes, Deuterium (2H) and Protium (1H), has been demonstrated. Palladium nanoparticles were anchored on the MWCNTs surface via a chemical process involving micellization, from a precursor chloride solution, in high ultrasonic density field. Pd-MWCNTs are quasi-aligned between the interdigitated gold electrodes of a SiO2 substrate by drop casting and di-electrophoretic alignment in Tetrahydrofuran (THF) and Nafion solution. The morphostructural characterization of the sensitive material has been carried out through SEM, TEM and Raman spectroscopy and its gas sensing properties were evaluated using electrical measurements performed on a series of isotope concentrations (ranging from 0.1% up to 1%, and from 1% to 4%, value to which hydrogen becomes explosive) diluted in argon, to observe the evolution of the sensor sensibility. The two hydrogen isotopes have different behaviors related to the adsorption on the Pd-MWCNT, which is well observed in the resistance change. Therefore, the sensor based on Pd-MWCNTs could be a viable solution to be integrated in systems for hydrogen leakage detection.  相似文献   

17.
There are a number of shortcomings for currently-available technologies for ammonia production, such as carbon dioxide emissions and water consumption. We simulate a novel model for ammonia production from hydrogen sulfide through membrane technologies. The proposed production process decreases the need for external water and reduces the physical footprint of the plant. The required hydrogen comes from the separation of hydrogen sulfide by electrochemical membrane separation, while the required nitrogen is obtained from separating oxygen from air through an ion transport membrane. 10% of the hydrogen from the electrochemical membrane separation along with the separated oxygen from the ion transport membrane is sent to the solid oxide fuel cell for heat and power generation. This production process operates with a minimal number of processing units and in physical, kinetic, and thermal conditions in which a separation factor of ~99.99% can be attained.  相似文献   

18.
The oxygen evolution reaction (OER) at anode requires high overpotential and is still challenging. The metallic core-oxyhydroxide layer structure is an efficient method to lower an overpotential. We synthesized Fe rich FeCo core-Co rich FeCo oxyhydroxide layer with a different particle size of 173 nm, 225 nm, and 387 nm (FeCo 173, 225, 387) through a difference in the reduction rate of Fe/Co precursors using facile modified polyol synthesis. To investigate the effect of conductivity, CoFe2O4 nanoparticles of 80–130 nm were synthesized. Among samples, FeCo 173 showed remarkable catalytic performance of 316 mV at a current density of 10 mA/cm2 in 0.1 M KOH compared to RuO2 (408 mV), FeCo 225 (323 mV), FeCo 387 (334 mV), CoFe2O4 (382 mV). Moreover, FeCo 173 showed good stability for 60,000 s while RuO2 showed a gradual increase in overpotential to maintain 10 mA/cm2 after 15,000 s in chronopotentiometry. The excellent performance was attributed to Fe-rich metallic core, a small amount of Fe doping into CoOOH, and the synergic effect between the active site of Co rich FeCoOOH and conductive Fe rich metallic core. Following this result, it shows that the use of such FeCo electrodes has advantages in the production of hydrogen via electrochemical water oxidation.  相似文献   

19.
The shipping industry needs to transition towards new fuels and technologies to reduce its environmental impact. A promising option is using hydrogen fuel cells. However, the technology is relatively new and not commercially available at a large scale. This study focuses on the Nordic shipping industry where the first commercial vessels are expected to be launched. Interviews were conducted with high-level managers to identify the factors that influence the adoption of hydrogen fuel cells. Sixteen factors are identified as motivating the decision and are categorized as internal, connecting, and external drivers. The most relevant are environmental commitments, customer expectations, and policies and regulations. Eleven factors are identified as limiting the decision and are categorized as behavioral, economic, organizational, and technological barriers. The most significant are high costs, lack of infrastructure, and operational challenges. The drivers and barriers are categorized as company-specific, industry-specific, and technology-specific.  相似文献   

20.
In the offshore petroleum industry, polymer-containing oily sludge (PCOS) hinders oil extraction and causes tremendous hazards to the marine ecological environment. In this paper, an effective pretreatment method is proposed to break the adhesive structure of PCOS, and the experiments of supercritical water gasification are carried out under the influencing factors including residence time (5–30 min) and temperature (400–750 °C) in batch reactors. The increase of time and temperature all show great promoting effects on gas production. Polycyclic aromatic hydrocarbons, including naphthalene and phenanthrene, are considered as the main obstacles for a complete gasification. Carbon gasification efficiency (CE) reaches maximum of 95.82% at 750 °C, 23 MPa for 30 min, while naphthalene makes up 70% of the organic compounds in residual liquid products. The highest hydrogen yield of 19.79 (mol H2/kg of PCOS) is observed in 750 °C for 25 min. A simplified reaction pathway is presented to describe the gaseous products (H2, CO, CO2, CH4). Two intermediates are defined for describing the reaction process bases on the exhaustive study on organic matters in residual liquid products. The results show that the calculated data and the experimental data have a high degree of fit and tar formation reaction is finished within 10 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号