首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The slow dissolution of the lithiated nickel oxide cathode represents one of the main causes of performance degradation in molten carbonate fuel cells (MCFC). Two main approaches were studied in ENEA laboratories to overcome this problem: protecting the nickel cathode covering it by a thin layer of a material with a low solubility in molten carbonate and stabilizing the nickel cathode doping it with iron and magnesium.Among several materials, due to its low solubility and good conductivity, lithium cobaltite was chosen to cover the nickel cathode and slow down its dissolution. A nickel electrode covered with a thin layer of lithium cobaltite doped with magnesium, was fabricated by complex sol-gel process. To simplify electrode preparation, no thermal treatments were made after covering to produce lithium cobaltite, and during the cell start-up LiMg0.05Co0.95O2 was obtained in situ.To stabilize the nickel cathode, metal oxides Fe2O3 and MgO were chosen as dopant additives to be mixed with NiO powder in a tape-casting process (Mg0.05Fe0.01Ni0.94O).On the prepared materials TGA analysis, morphological analysis by scanning electron microscopy (SEM-EDS) and electrical conductivity measurements were carried out.A conventional nickel cathode, the nickel cathode covered by lithium cobaltite precursors and the nickel cathode stabilized by iron and magnesium oxides were each tested in a 100 cm2 fuel cell.Polarization curves and internal resistance (iR) measurements were acquired during the cell lifetime (1000 h) and the effect of gas composition variation on the cell performance was studied.From a comparison with the conventional nickel cathode it can be observed that the new materials have similar performance and show a good potential stability during the cell operating time. From the post-test analysis both the nickel cathode covered by lithium cobaltite and the nickel cathode doped with iron and magnesium seem to succeed in reducing nickel dissolution.  相似文献   

2.
In order to improve the stack life time of MCFCs, it is necessary to reduce the operating temperature of MCFCs below 600 °C, because reduced operating temperature minimizes electrolyte loss due to evaporation and corrosion. However, at the low operating temperature below 600 °C, the cell performance of MCFCs with (Li/Na)2CO3 electrolyte is too low to operate the fuel cell stack and system. In this study, we have performed wettability control of the liquid molten carbonate electrolyte by coating NiO cathodes with poor wetting property of the mixed ionic and electronic conductor (MIEC) such as BYS (Bi1.5Y0.3Sm0.3O3-δ). From experiments with symmetrical cells, each polarization component with various temperatures and gas conditions were studied. To investigate effects of the BYS coated cathode on the performance of MCFCs, a 100 cm2 single cell of MCFCs was employed. The performance of a 100 cm2 single cell with BYS coated cathode was better than that with conventional cathode by a factor of 1.84, because BYS coated cathode reduces activation polarization and mass transfer resistance greatly.  相似文献   

3.
In order to introduce molten carbonate fuel cells (MCFCs) in commercial applications, the target lifetime of a MCFC has been set at 40,000 h. We have carried out long-term operation tests on several bench-scale MCFCs, which include a 66,000-h continuous operation, and clarified the question of voltage degradation in relation to operating time. We have also carried out post-test analyses on the long-term operated cell components including the electrodes, the electrolyte matrix and the current collectors. The results of the long-term operation and the post-test analyses are described in this paper. The degradation mechanisms of voltage and components are discussed.  相似文献   

4.
A solid oxide fuel cell with internal reforming operation is run at partial fuel utilization; thus, the remaining fuel can be further used for producing additional power. In addition, the exhaust gas of a solid oxide fuel cell still contains carbon dioxide, which is the primary greenhouse gas, and identifying a way to utilize this carbon dioxide is important. Integrating the solid oxide fuel cell with the molten carbonate fuel cell is a potential solution for carbon dioxide utilization. In this study, the performance of the integrated fuel cell system is analyzed. The solid oxide fuel cell is the main power generator, and the molten carbonate fuel cell is regarded as a carbon dioxide concentrator that produces electricity as a by-product. Modeling of the solid oxide fuel cell and the molten carbonate fuel cell is based on one-dimensional mass balance, considering all cell voltage losses. Primary operating conditions of the integrated fuel cell system that affect the system efficiencies in terms of power generation and carbon dioxide utilization are studied, and the optimal operating parameters are identified based on these criteria. Various configurations of the integrated fuel cell system are proposed and compared to determine the suitable design of the integrated fuel cell system.  相似文献   

5.
During the cell operation of molten carbonate fuel cells (MCFCs), matrix cracks caused by poor mechanical strength accelerate cell performance degradation. Therefore, for a stable long-term cell operation, the improvement of mechanical properties of matrix is highly required. In this study, aluminum foam was used to enhance the mechanical strength of the matrix as a 3D (three dimensional) support structure. Unlikely conventional matrix (pure α-LiAlO2 matrix) which has paste-like structure at the MCFC operating temperature, Al foam-reinforced α-LiAlO2 matrix has significantly strong mechanical strength because the 3D network structure of Al foam can form the harden alumina skin layer during a cell operation. As a result, the mechanical strength of the Al foam-reinforced α-LiAlO2 matrix was enhanced by 9 times higher than the pure α-LiAlO2 matrix in a 3-point bending test. In addition, thermal cycle test showed notable cell stability due to strong mechanical strength of Al foam-reinforced α-LiAlO2 matrix. The Al foam-reinforced α-LiAlO2 matrix shows appropriate microstructure to preserve the liquid electrolyte when performing the mercury porosimeter analysis and differential pressure test between anode and cathode. Moreover, evaluation of stability and durability for a long-term cell operation were demonstrated by single cell test for 1,000 h.  相似文献   

6.
Ni-Al2O3 catalysts for use in internal reforming in a molten carbonate fuel cell (MCFC) were prepared by homogeneous precipitation method at various synthesis temperatures. The effects of synthesis temperature on physicochemical properties and catalytic activities of the Ni-Al2O3 catalysts were investigated. XRD measurements exhibited that the peak intensity of NiAl2O4 in the calcined catalysts increased with higher synthesis temperatures. TPR measurements demonstrated that reduction peaks appeared around 670–680 °C for every synthesis temperature, indicating that the Ni particles interacted strongly with the support. Hydrogen chemisorption results showed that nickel dispersion and nickel surface area decreased in the order: K52_80C > K52_85C > K52_90C > K52_95C > K52_100C. TEM images of the reduced Ni-Al2O3 catalysts revealed that the average sizes of Ni particles were 13.1, 13.4 and 15.9 nm for K52_80C, K52_90C and K52_100C, respectively, which means that a higher synthesis temperature yielded a larger Ni particle. The performance of the catalysts in methane steam reforming showed that catalysts prepared at the lowest synthesis temperature (80 °C) exhibited the highest reaction rate. These results suggest that a lower synthesis temperature is favorable to prepare highly active Ni-Al2O3 catalysts by the homogeneous precipitation method.  相似文献   

7.
Operating temperature of a molten carbonate fuel cell stack should be controlled within a special range in order to improve the performance of fuel cell. In this paper, a nonlinear predictive control algorithm based on the Takagi–Sugeno fuzzy model is developed for the temperature of a molten carbonate fuel cell stack. Through predicting the outputs on a Takagi–Sugeno fuzzy model, a discrete optimization of the control action is adopted according to the principle of branch-and-bound method. The simulation results show the potential to introduce the predictive control based on Takagi–Sugeno fuzzy model for the development of fuel cells.  相似文献   

8.
In recent years, there has been increasing interest in fuel cell hybrid systems. In this paper, a novel multi-generation combined energy system is proposed. The system consists of a molten carbonate fuel cell (MCFC), a thermally regenerative electro-chemical cycle (TREC), a thermo photovoltaic cell (TPV), an alkaline electrolyzer (AE) and an absorption refrigerator (AR). It has four useful outputs, namely electricity, hydrogen, cooling and heating. The overall system is thermodynamically modeled in a detailed manner while its simulation and modeling are done through the TRNSYS software tool. Power output, cooling-heating and produced hydrogen rates are determined using energetic and exergetic analysis methods. Results are obtained numerically and plotted. The maximum power output from the system is 16.14 kW while maximum energy efficiency and exergy efficiency are 86.8% and 80.4%,. The largest exergy destruction is due to the MCFC.  相似文献   

9.
The current collector for the molten carbonate fuel cell (MCFC) is manufactured from the sheet metal forming process. After the forming process, the current collector is bent resulting in a specific curvature (κi) in the direction in which trapezoidal protrusions are formed due to springback. In the stack of the MCFC, small deformation of the current collector can bring about defects in the electrolyte, non-uniform contact and difficulties in assembling the stack. Therefore, the curvature of the current collector should be minimized in order to reduce defects which can cause critical damage in the long-term operation. In order to straighten the current collector, the levelling process using three rolls was employed. In this work, a simple and effective method for designing the levelling process was proposed. An analytic model and the finite element analysis were used in combination. The optimal curvature minimizing the resultant curvature and the resultant moment of the current collector down to zero was calculated from the bending moment–curvature relationship. The bending moment–curvature relationship of the current collector was determined from the finite element analysis of uniform bending using the simulation results of the three-stage forming process. In the analytic model based on curvature integration method, the proper roll arrangement corresponding to the optimal curvature was calculated. Experiments were conducted using the calculated roll arrangement. The current collector was levelled nearly flat using the levelling process. After the levelling process, the flattened current collector was easily assembled with a centre plate and ensuring uniform contact with the electrolyte.  相似文献   

10.
This research focuses on modeling the relationships between operating parameters and performance measures for a single stack direct methanol fuel cell (DMFC). Four operating parameters, including temperature, methanol concentration, and methanol and air flow rates, are considered in this work. Performance of the DMFC is described by the relationship between current density and voltage. The open circuit voltage and voltage drop in the closed circuit due to resistance, activation, and concentration polarization are influenced by the operating parameters. To consider both modeling accuracy and simplicity, a semi-empirical model is developed in this work by integrating theoretical and approximation models. Experiments were designed and conducted to collect the required data and to obtain the coefficients in the semi-empirical model. The error analysis indicates that our semi-empirical model is effective for predicating the DMFC's performance. The influence of the four operating parameters on the DMFC's performance is also analyzed based on this semi-empirical model. Possible applications of the semi-empirical model in the optimal control of fuel cell systems are also discussed.  相似文献   

11.
Fuel cells can be attractive for use as stationary combined heat and power (CHP) systems. Molten carbonate fuel cell (MCFC) power plants are prime candidates for the utilization of fossil based fuels to generate high efficiency ultra clean power. However, fuel cells are considerably more expensive than comparable conventional technologies and therefore a careful analysis of the economics must be taken. This work presents analysis on the feasibility of installing both a FuelCell Energy DFC® 1500MA and 300MA system for use at Adams Thermal Systems, a manufacturing facility in the U.S. Midwest. The paper examined thoroughly the economics driving the appropriateness of this measure. In addition, a parametric study was conducted to determine scenarios including variation in electric and natural gas rates along with reduced installation costs.  相似文献   

12.
Molten carbonate fuel cells (MCFC) used as carbon dioxide separation units in integrated fuel cell and conventional power generation can potentially reduce carbon emission from fossil fuel power production. The MCFC can utilize CO2 in combustion flue gas at the cathode as oxidant and concentrate it at the anode through the cell reaction and thereby simplifying capture and storage. However, combustion flue gas often contains sulfur dioxide which, if entering the cathode, causes performance degradation by corrosion and by poisoning of the fuel cell. The effect of contaminating an MCFC with low concentrations of both SO2 at the cathode and H2S at the anode was studied. The poisoning mechanism of SO2 is believed to be that of sulfur transfer through the electrolyte and formation of H2S at the anode. By using a small button cell setup in which the anode and cathode behavior can be studied separately, the anodic poisoning from SO2 in oxidant gas can be directly compared to that of H2S in fuel gas. Measurements were performed with SO2 added to oxidant gas in concentrations up to 24 ppm, both for short-term (90 min) and for long-term (100 h) contaminant exposure. The poisoning effect of H2S was studied for gas compositions with high- and low concentration of H2 in fuel gas. The H2S was added to the fuel gas stream in concentrations of 1, 2 and 4 ppm. Results show that the effect of SO2 in oxidant gas was significant after 100 h exposure with 8 ppm, and for short-term exposure above 12 ppm. The effect of SO2 was also seen on the anode side, supporting the theory of a sulfur transfer mechanism and H2S poisoning. The effect on anode polarization of H2S in fuel gas was equivalent to that of SO2 in oxidant gas.  相似文献   

13.
As electricity demand can vary considerably and unpredictably, it is necessary to integrate energy storage with power generation systems. This study investigates a solid oxide and molten carbonate fuel cell system integrated with a gas turbine (GT) for power generation. The advanced adiabatic compressed air energy storage (AA-CAES) system is designed to enhance the system flexibility. Simulations of the proposed power system are performed to demonstrate the amount of power that can supply to the loads during normal and peak modes of operation under steady-state conditions. The pressure ratios of the GT and AA-CAES and the additional air feed are used to design the system and analyze the system performance. The results show that a small additional air feed to the GT is certainly required for the hybrid system. The GT pressure ratio of 2 provides a maximum benefit. The AA-CAES pressure ratio of 5 is recommended to spare some air in the storage and minimize storage volume. Moreover, implementation of the GT and AA-CAES into the integrated fuel cell system allows the system to cope with the variations in power demand.  相似文献   

14.
This study investigates the safety integrity levels for an electric propulsion system based on a molten carbonate fuel cell in a liquefied hydrogen tanker. The electric propulsion system necessitates multiple electronic and electric elements; thus, the functional safety of the system should be considered. Additionally, a maritime fuel cell system is nonconventional propulsion machinery. This system should follow a risk-based ship design framework, and IEC 61511 is a suitable standard for evaluating the functional safety of the system. Hazardous operability studies provide basic information for determining the safety integrity. In this work, a safety layer matrix and calibrated risk graph are generated, and a layer of protection analysis is conducted for a molten carbonate fuel cell stack. Eight guidewords are used to describe accidental scenarios and compare the results of the three methods in an unbiased manner. The most severe consequences are fire and explosion caused by overflows or a control failure in the stack, and the safety integrity levels are mutually different.  相似文献   

15.
The aim of this paper is to investigate the implementation of a molten carbonate fuel cell (MCFC) as a CO2 separator. By applying multi-objective optimization (MOO) using the genetic algorithm, the optimal values of operating load and the corresponding values of objective functions are obtained. Objective functions are minimization of the cost of electricity (COE) and minimization of CO2 emission rate. CO2 tax that is accounted as the pollution-related cost, transforming the environmental objective to the cost function. The results show that the MCFC stack which is fed by the syngas and gas turbine exhaust, not only reduces CO2 emission rate, but also produces electricity and reduces environmental cost of the system.  相似文献   

16.
This study examined the temperature distributions of the anode and cathode gases of the cell body as well as the current density distributions at each point of the direct internal reforming molten carbonate fuel cell (DIR‐MCFC) using numerical modelling. The model was based on assumptions and experimental data from a 5 cm × 5 cm sized unit cell operation. The results showed there was an approximately 13°C temperature difference between the initial point (0, 0) and end point (1, 1) of the cell body and the temperature increased steadily along with the direction of the anode gas flow. The temperature distribution of the anode gases showed a similar trend to those of the cell body. The temperature of the anode gases was an average 11°C lower than that of the cell body. The temperature distributions of cathode gases were relatively higher than those of the anode gases and the cell body. The temperature distributions at each point of the cell body, including the anode and cathode gases, could be explained by the different rates of the electrochemical, methane steam reforming and water–gas shift reactions at each point in the cell body. The current density distribution at the entrance of the cell was the highest at 290 mA cm?2, and decreased steadily to 150 mA cm?2 at the exit. These results were also confirmed by the amount of hydrogen reacted in the electrochemical reaction (referred to Part II). Finally, modelling simulations showed a non‐uniform distribution of the temperature and current density throughout the DIR‐MCFC were observed. In addition, it was confirmed that the distributions of the reaction rates and gas compositions at each point of the cell also showed a great deal of difference throughout the DIR‐MCFC. The non‐uniformity of these temperature distributions can lead to deterioration in the cell performance. These might provide the necessary information for solving these problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
The influence of chemically induced expansion on the fracture damage of a nonstoichiometric oxide (ceria) based solid oxide fuel cell (SOFC) single cell laminate was investigated by using numerical stress analyses under oxidizing/reducing gradient condition. The single cell examined in this study was composed of electrolyte (Ce0.8Sm0.2O2−δ), anode (Cermets of Ni-Ce0.8Sm0.2O2−δ), and cathode (La0.6Sr0.4Co0.2Fe0.8O3−δ), respectively. The finite element method (FEM) was employed to calculate the residual stress, thermal stresses, and chemically induced expansion stresses for the single cell. The residual and thermal stresses were calculated much smaller than the fracture strength of the individual components of the single cell. On the other hand, the chemically induced expansion stresses were shown to remarkably increase for the temperature range greater than 973 K and accounted their magnitude for primary part of the induced stress. It was shown from the FEM that the maximum circumferential stress induced in the single cell exceeded the fracture strength of the individual components at the onset of the fracture damage detect by acoustic emission (AE) method.  相似文献   

18.
Several different shut-down procedures were carried out to reduce the degradation of membrane electrode assembly (MEA) in a proton exchange membrane fuel cell (PEMFC). The effects of close/open state of outlets of a single cell and application of a dummy load during the shut-down on the degradation of the MEA were investigated. Also, we elucidated the relationship between the thickness of the electrolyte membrane and the degradation of the MEA for different shut-down procedures. When a thin electrolyte membrane was used, the closer of outlets mitigated the degradation during on/off operation. For the thicker electrolyte membrane, the dummy load which eliminates residual hydrogen and oxygen in the electrodes should be applied to lower the degradation.  相似文献   

19.
Performance and electrochemical impedance spectroscopy (EIS) tests were performed at different temperatures and humidity levels to understand the effects of temperature and humidity on the performance and resistance of a PBI/H3PO4 fuel cell.The results of the performance tests indicated that increasing the temperature significantly improved the cell performance. In contrast, no improvement was observed when the gas humidity was increased. On the other hand, the EIS results showed that the membrane resistance was reduced for elevated temperatures. This development can be interpreted by the increase in membrane conductivity, as reflected by the Arrhenius equation. As the formation of H4P2O7 and the self-dehydration of H3PO4 start around 130-140 °C, in PBI, they increase the membrane resistance at temperatures that are higher than 130 °C. In addition, the membrane resistance was reduced for elevated gas humidity levels. This is because an increase in humidity leads to an increase of the membrane hydration level.The resistance of the catalyst kinetics mainly contributes to the charge transfer resistance. However, under certain conditions, the interfacial charge transfer resistance is also important. It was concluded that the gas diffusion is the main contributor to the mass transfer resistance under dry conditions while it is the gas concentration under humid conditions.  相似文献   

20.
An effective strategy for generating combined heat and power (CHP) systems is to use the combustion of hydrocarbons to provide fuel reforming and heat production for solid oxide fuel cell (SOFC) operation. Though tubular SOFCs (tSOFCs) are well suited to the thermal cycling associated with combustion systems, they have a geometric limitation which requires significant alteration to the combustion chamber. These alterations can be eliminated by producing an anode supported internal cathode-tSOFC (IC-tSOFC) which can be directly integrated into the chamber with minimal alterations. Novel methods used to produce IC-tSOFCs are discussed in this work. Scanning electron microscopy (SEM) and performance characterization are used to analyze fabricated cells. With a peak power density of 369 mW∙cm−2, and an open circuit voltage (OCV) of 0.98 V, it is confirmed that novel production methods for IC-tSOFCs have been successful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号