首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 578 毫秒
1.
为了得到热电式MEMS微波功率传感器的三维温度分布和时间常数,建立了传感器的三维等效电路模型。首先根据热-电参数的等效关系和传感器的结构建立等效电路模型。接着,对等效电路的单元模块进行理论分析。最后,根据建立的三维等效电路模型研究传感器的温度分布和响应时间。传感器的灵敏度为0.076 mV/mW@10 GHz,时间常数为56.24μs。测试结果表明,传感器的灵敏度为0.06 mV/mW@10 GHz,时间常数为85μs。所建立的三维等效电路模型不但可以得到微波功率传感器的响应时间,而且可以准确地得到热量在衬底的耗散情况。因此,本研究对热电式MEMS微波功率传感器设计具有一定的参考价值。  相似文献   

2.
为了解决5G功率传感器灵敏度不高的问题,创新性地提出一种可面向5G应用的MEMS跷跷板结构功率传感器。S参数测试结果表明,在1 GHz-10 GHz的频段内传感器的回波损耗小于-12.5 dB,插入损耗小于1.5 dB。功率响应测试表明,内部电容的灵敏度接近69.2aF/mW@1GHz、71.5aF/mW@5GHz和66.3aF/mW@10GHz,外部电容的灵敏度约为35.2aF/mW@1GHz、33.0aF/mW@5GHz和27.6aF/mW@10GHz,表明该跷跷板结构设计提高了传感器的灵敏度。  相似文献   

3.
刘彤  廖小平  王德波 《半导体学报》2011,32(7):074009-5
本文采用傅里叶等效模型对一种与GaAs MMIC工艺兼容的终端式MEMS微波功率传感器的热转移行为进行了研究,在该傅里叶等效模型的基础上,重点分析了微波功率传感器灵敏度与热电堆长度之间的关系。对传感器芯片进行了测试,频率为10GHz,输入功率为1~100mW,传感器具有良好的匹配特性和较高的线性度;热电偶的长度为40,70和100μm时,基于该傅里叶等效模型计算得到的灵敏度值分别为0.12,0.20和0.29mV/mW, 而相对应的测试结果分别为0.10,0.22和0.30mV/mW,其误差小于0.02 mV/mW。因此基于该傅里叶等效模型的灵敏度表达式得到了实验验证。  相似文献   

4.
本文提出了一种基于力-电和热-电原理的MEMS微波功率传感器,并依次对以力-电转换原理的电容式MEMS微波功率传感器和以热-电转换原理的热电式MEMS微波功率传感器进行建模。其一是通过采用挠度方程对力-电转换原理部分的固支梁建立力-电模型;二是通过采用热传导方程对热-电转换原理部分的温度分布建立二维热-电模型。最后将微波功率等效为均方根电压,以固支梁形变量为线索串联起力-电和热-电转换原理部分,研究微波功率、力-电转换原理部分的固支梁形变以及热-电转换原理部分的热电势之间关系,进而得到包含多物理场的系统级模型。对于电容式传感器,解析模型仿真结果与HFSS仿真结果具有较好的一致性,验证了其模型的有效性;而对于热电式传感器,衬底膜的厚度越薄,热电堆的冷热两端温差越高,进而输出热电势越大。结果表明,该MEMS微波功率传感器在30-35 GHz时插入损耗S21在-0.1 ~ -0.3 dB范围内,反射损耗S11小于-18 dB;当输入微波功率分别为160和320 mW时,热电势在32 GHz时分别为42.41和84.85 mV,在40 GHz是分别为40.03和79.11 mV。  相似文献   

5.
戴瑞萍  胡加杨  李龙飞  王德波 《微电子学》2019,49(6):868-872, 877
热电转换效率直接影响热电式MEMS微波功率传感器的性能。着重对衬底掏空结构的热电式微波功率传感器进行了研究。将热电式微波功率传感器分成三个区域,建立了傅里叶模型,研究背面刻蚀的长度与厚度对热电堆热端温度的影响,发现热电堆两端温差与背面刻蚀的长度、厚度成正比。利用有限元仿真软件ANSYS,对不同刻蚀长度、厚度的传感器进行热学仿真。结果表明,背面刻蚀尺寸越大,热电堆两端的温差越大,传感器的灵敏度得到提高。仿真结果与模型结果具有较高的一致性,验证了模型的准确性。  相似文献   

6.
为实现热电式MEMS微波功率传感器与电容式MEMS微波功率传感器的兼容,得到一种性能优良的双通道MEMS微波功率传感器,需要对MEMS悬臂梁的匹配特性进行分析与设计。根据MEMS悬臂梁的一维集中参数模型,分析了MEMS悬臂梁的吸合电压,研究了MEMS悬臂梁的位移与电容的变化关系以及MEMS悬臂梁的谐振频率,得到了MEMS悬臂梁的匹配特性与MEMS悬臂梁高度的变化关系。实验结果表明,当MEMS悬臂梁的高度设计为10 μm时,MEMS悬臂梁的谐振频率为16.13 kHz,在8~12 GHz频率范围内,回波损耗均小于-19 dB。  相似文献   

7.
胡加杨  李龙飞  谷新丰  吉新村  王德波 《微电子学》2020,50(1):137-141, 147
为改善热电式MEMS微波功率传感器的电-热-电转换效率,提出了一种新型介质嵌层结构。选用Si3N4、新型材料石墨烯分别作为介质嵌层。建立介质嵌层结构的热学模型,采用Ansys软件对热学特性进行了仿真。结果表明,当石墨烯作为介质嵌层时,热电偶热端的温度提高了12 K,有效改善了传热效率,提高了热电堆温差。建立介质嵌层结构的电磁模型,采用Hfss软件对微波性能进行了仿真。结果表明,在8~12 GHz范围内,S参数约为-18 dB,传感器仍具有良好的匹配特性。该介质嵌层结构对热电式MEMS微波功率传感器研究有参考价值。  相似文献   

8.
韩磊  黄庆安  廖小平 《半导体学报》2007,28(7):1144-1148
提出了一种基于MEMS技术的在线式微波功率传感器结构,并对该结构进行了理论分析、设计、制作和测量.该结构通过测量由MEMS膜耦合出的一小部分微波功率实现功率的测量.该结构制作工艺与GaAs MMIC工艺完全兼容.测量结果显示,在12GHz频率以内,微波功率传感器的反射系数小于-15dB,插入损耗小于2dB,在10GHz中心频率下的灵敏度为10 4μV/mW.  相似文献   

9.
提出了一种基于MEMS技术的在线式微波功率传感器结构,并对该结构进行了理论分析、设计、制作和测量.该结构通过测量由MEMS膜耦合出的一小部分微波功率实现功率的测量.该结构制作工艺与GaAs MMIC工艺完全兼容.测量结果显示,在12GHz频率以内,微波功率传感器的反射系数小于-15dB,插入损耗小于2dB,在10GHz中心频率下的灵敏度为10 4μV/mW.  相似文献   

10.
韩磊 《微波学报》2011,27(3):70-74
提出了一种基于MEMS技术的在线式微波功率传感器结构,并对该结构进行了理论分析、设计、制作和测量。该微波功率传感器通过加入阻抗匹配和开路短截线结构实现低损耗和宽频带的在线测量。该结构制作工艺与GaAs MMIC工艺完全兼容。测量结果显示,在8GHz~12GHz频率范围内,微波功率传感器的反射系数小于-18dB,插入损耗优于0.45dB,在10GHz中心频率下的灵敏度为12.0μV/mW。  相似文献   

11.
高波  杨晶  蒋思  王德波 《半导体学报》2016,37(8):084004-3
A power radiation monitoring system based on thermoelectric MEMS microwave power sensors is studied. This monitoring system consists of three modules: a data acquisition module, a data processing and display module, and a data sharing module. It can detect the power radiation in the environment and the date information can be processed and shared. The measured results show that the thermoelectric MEMS microwave power sensor and the power radiation monitoring system both have a relatively good linearity. The sensitivity of the thermoelectric MEMS microwave power sensor is about 0.101 mV/mW, and the sensitivity of the monitoring system is about 0.038 V/mW. The voltage gain of the monitoring system is about 380 times, which is relatively consistent with the theoretical value. In addition, the low-frequency and low-power module in the monitoring system is adopted in order to reduce the electromagnetic pollution and the power consumption, and this work will extend the application of the thermoelectric MEMS microwave power sensor in more areas.  相似文献   

12.
A novel symmetrical microwave power sensor based on MEMS technology is presented. In this power sensor, the left section inputs the microwave power, while the right section inputs the DC power. Because of its symmetrical structure, this power sensor provides more accurate microwave power measurement capability without mismatch uncertainty and temperature drift. The loss caused by the microwave signal is simulated in this power sensor. This power sensor is designed and fabricated using GaAs MMIC technology. And it is measured in the frequency range up to 20 GHz with an input power in the 0-80 mW range. Over the 80 mW dynamic range, the sensitivity can achieve about 0.2 mV/mW. The difference between the input power in the two sections is below 0.1% for an equal output voltage. In short, the key aspect of this power sensor is that the microwave power measurement is replaced with a DC power measurement.  相似文献   

13.
A terminating type MEMS microwave power sensor based on the Seebeck effect and compatible with the GaAs MMIC process is presented.An electrothermal model is introduced to simulate the heat transfer behavior and temperature distribution.The sensor measured the microwave power from-20 to 20 dBm up to 20 GHz.The sensitivity of the sensor is 0.27 mV/mW at 20 GHz.and the input retum loss is less than-26 dB over the entire experiment frequency range.In order to improve the sensitivity,four different types of coplanar waveguide(CPW) were designed and the sensitivity Was significantly increased by about a factor of 2.  相似文献   

14.
A Fourier equivalent model is introduced to research the thermal transfer behavior of a terminating-type MEMS microwave power sensor.The fabrication of this MEMS microwave power sensor is compatible with the GaAs MMIC process.Based on the Fourier equivalent model,the relationship between the sensitivity of a MEMS microwave power sensor and the length of thermopile is studied in particular.The power sensor is measured with an input power from 1 to 100 mW at 10 GHz,and the measurement results show that the power sensor has good input match characteristics and high linearity.The sensitivity calculated from a Fourier equivalent model is about 0.12,0.20 and 0.29 mV/mW with the length at 40,70 and 100μm,respectively,while the sensitivity of the measurement results is about 0.10,0.22 and 0.30 mV/mW,respectively,and the differences are below 0.02 mV/mW. The sensitivity expression based on the Fourier equivalent model is verified by the measurement results.  相似文献   

15.
This paper presents the modeling, fabrication, and measurement of a capacitive membrane MEMS microwave power sensor. The sensor measures microwave power coupled from coplanar waveguide (CPW) transmission lines by a MEMS membrane and then converts it into a DC voltage output by using thermopiles. Since the fabrication process is fully compatible with the GaAs monolithic microwave integrated circuit (MMIC) process, this sensor could be conveniently embedded into MMIC. From the measured DC voltage output and S-parameters, the average sensitivity in the X-band is 225.43 μV/mW, while the reflection loss is below-14 dB. The MEMS microwave power sensor has good linearity with a voltage standing wave ration of less than 1.513 in the whole X-band. In addition, the measurements using amplitude modulation signals prove that the modulation index directly influences the output DC voltage.  相似文献   

16.
This work describes an implementation of a thermoelectric microwave power sensor fabricated through commercial CMOS process with additional maskless etching. The sensor combines micromachined coplanar waveguide and contact pads, a microwave termination which dissipates heat proportionally to input microwave power, and many aluminum-polysilicon thermocouples. The device was designed and fabricated in standard CMOS technology, including the appropriate superimposed dielectric openings for post-fabrication micromachining. By removing the bulk silicon located beneath the device through micromachining, thermal and electromagnetic losses are minimized. The sensor measures signal true RMS power in the frequency range up to 20 GHz with input power in the -30 dBm to +10 dBm range. Over this 40 dB dynamic range, output voltage versus input power is linear within less than ±0.16%. Automatic network analyzer data show an acceptable input return loss of less than -30 dB over the entire frequency range  相似文献   

17.
金叶  王德波 《微电子学》2023,53(2):304-309
为了改善在线式MEMS微波功率传感器的灵敏度特性,设计了一种新型双悬臂梁结构的MEMS微波功率传感器。该结构将测试电极和锚区设计在中心信号线的两侧。建立了双悬臂梁集总电路等效模型,研究了双悬臂梁结构的微波功率传感器的微波特性。构建了枢纽式双悬臂梁静力学模型,研究并分析了新型悬臂梁结构的过载功率与灵敏度。结果表明,相比于测试电极和锚区位于信号线同侧的传统单悬臂梁结构,新型双悬臂梁结构的灵敏度提升了6~8倍。这在一定程度上解决了电容式微波功率传感器检测灵敏度较低的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号