共查询到16条相似文献,搜索用时 62 毫秒
1.
为了提高热电式微波功率传感器的传热效率,改善传感器的性能,对热电式微波功率传感器的衬底结构进行了优化设计,得到了最优的衬底结构尺寸。首先研究衬底厚度对热电式微波功率传感器的影响,然后根据得到的最优衬底厚度,研究基底膜位置及尺寸对热电式微波功率传感器性能的影响,最后对所得最优衬底结构传感器的微波特性以及电磁场分布进行研究。结果表明,当传感器衬底的结构尺寸最优时,传感器的最高温度达到352.76 K,S参数小于-20.62 dB。该结构不仅减少了热量在衬底的堆积,提高了负载电阻到热电堆的热传输效率,而且具有良好的微波特性。 相似文献
2.
热电转换效率直接影响热电式MEMS微波功率传感器的性能。着重对衬底掏空结构的热电式微波功率传感器进行了研究。将热电式微波功率传感器分成三个区域,建立了傅里叶模型,研究背面刻蚀的长度与厚度对热电堆热端温度的影响,发现热电堆两端温差与背面刻蚀的长度、厚度成正比。利用有限元仿真软件ANSYS,对不同刻蚀长度、厚度的传感器进行热学仿真。结果表明,背面刻蚀尺寸越大,热电堆两端的温差越大,传感器的灵敏度得到提高。仿真结果与模型结果具有较高的一致性,验证了模型的准确性。 相似文献
3.
为改善热电式MEMS微波功率传感器的电-热-电转换效率,提出了一种新型介质嵌层结构。选用Si3N4、新型材料石墨烯分别作为介质嵌层。建立介质嵌层结构的热学模型,采用Ansys软件对热学特性进行了仿真。结果表明,当石墨烯作为介质嵌层时,热电偶热端的温度提高了12 K,有效改善了传热效率,提高了热电堆温差。建立介质嵌层结构的电磁模型,采用Hfss软件对微波性能进行了仿真。结果表明,在8~12 GHz范围内,S参数约为-18 dB,传感器仍具有良好的匹配特性。该介质嵌层结构对热电式MEMS微波功率传感器研究有参考价值。 相似文献
4.
5.
6.
7.
为了研究电容式MEMS微波功率传感器悬臂梁的非线性运动,建立了MEMS悬臂梁在空间域上的弯曲特性模型,综合考虑静电力、轴向应力以及残余应力对悬臂梁非线性运动的影响,求解得到动力学微分方程。在此基础上研究在不同杨氏模量、驱动电压和残余应力下悬臂梁的弯曲特性,解析得到对应的悬臂梁弯曲特性曲线与轴向应力曲线。使用有限元分析软件ANSYS对不同驱动电压下的悬臂梁下拉位移进行仿真,并对仿真结果与解析结果进行比较。结果表明,在驱动电压从10 V到20 V的变化过程中,仿真结果与模型解析结果具有一致的趋势,两者间的最大误差仅有8.81%。对电容式MEMS微波功率传感器的悬臂梁弯曲特性的研究具有一定的参考价值和指导意义。 相似文献
8.
MEMS传感器的封装 总被引:2,自引:0,他引:2
首先通过对MEMS封装所面临的挑战进行分析,提出了MEMS封装所需要考虑的一些问题。然后从芯片级、晶片级和系统级三个方面详细介绍了倒装焊、BGA、WLP、MCM和3D封装等先进的封装技术,并给出了一些应用这些封装方式对MEMS系统封装的实例。最后对MEMS和MEMS封装的走向进行了展望,并对全集成MEMS系统的封装进行了一些探讨。 相似文献
9.
A terminating type MEMS microwave power sensor based on the Seebeck effect and compatible with the GaAs MMIC process is presented. An electrothermal model is introduced to simulate the heat transfer behavior and temperature distribution. The sensor measured the microwave power from –20 to 20 dBm up to 20 GHz. The sensitivity of the sensor is 0.27 mV/mW at 20 GHz, and the input return loss is less than –26 dB over the entire experiment frequency range. In order to improve the sensitivity, four different types of coplanar waveguide (CPW) were designed and the sensitivity was significantly increased by about a factor of 2. 相似文献
10.
11.
12.
13.
提出了一种基于MEMS技术的在线式微波功率传感器结构,并对该结构进行了理论分析、设计、制作和测量。该微波功率传感器通过加入阻抗匹配和开路短截线结构实现低损耗和宽频带的在线测量。该结构制作工艺与GaAs MMIC工艺完全兼容。测量结果显示,在8GHz~12GHz频率范围内,微波功率传感器的反射系数小于-18dB,插入损耗优于0.45dB,在10GHz中心频率下的灵敏度为12.0μV/mW。 相似文献
14.
A power radiation monitoring system based on thermoelectric MEMS microwave power sensors is studied. This monitoring system consists of three modules: a data acquisition module, a data processing and display module, and a data sharing module. It can detect the power radiation in the environment and the date information can be processed and shared. The measured results show that the thermoelectric MEMS microwave power sensor and the power radiation monitoring system both have a relatively good linearity. The sensitivity of the thermoelectric MEMS microwave power sensor is about 0.101 mV/mW, and the sensitivity of the monitoring system is about 0.038 V/mW. The voltage gain of the monitoring system is about 380 times, which is relatively consistent with the theoretical value. In addition, the low-frequency and low-power module in the monitoring system is adopted in order to reduce the electromagnetic pollution and the power consumption, and this work will extend the application of the thermoelectric MEMS microwave power sensor in more areas. 相似文献
15.
This paper presents the modeling, fabrication, and measurement of a capacitive membrane MEMS microwave power sensor. The sensor measures microwave power coupled from coplanar waveguide (CPW) transmission lines by a MEMS membrane and then converts it into a DC voltage output by using thermopiles. Since the fabrication process is fully compatible with the GaAs monolithic microwave integrated circuit (MMIC) process, this sensor could be conveniently embedded into MMIC. From the measured DC voltage output and S-parameters, the average sensitivity in the X-band is 225.43 μV/mW, while the reflection loss is below-14 dB. The MEMS microwave power sensor has good linearity with a voltage standing wave ration of less than 1.513 in the whole X-band. In addition, the measurements using amplitude modulation signals prove that the modulation index directly influences the output DC voltage. 相似文献
16.
This paper presents the modeling, fabrication, and measurement of a capacitive membrane MEMS microwave power sensor. The sensor measures microwave power coupled from coplanar waveguide (CPW) transmission lines by a MEMS membrane and then converts it into a DC voltage output by using thermopiles. Since the fabrication process is fully compatible with the GaAs monolithic microwave integrated circuit (MMIC) process, this sensor could be conveniently embedded into MMIC. From the measured DC voltage output and S-parameters, the average sensitivity in the X-band is 225.43μV/mW, while the reflection loss is below -14 dB. The MEMS microwave power sensor has good linearity with a voltage standing wave ration of less than 1.513 in the whole X-band. In addition, the measurements using amplitude modulation signals prove that the modulation index directly influences the output DC voltage. 相似文献