首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-distance road-freight transport emits a large share of Germany's greenhouse gas (GHG) emissions. A potential solution for reducing GHG emissions in this sector is to use green hydrogen in fuel cell electric vehicles (FC-HDV) and establish an accompanying hydrogen refueling station (HRS) network. In this paper, we apply an existing refueling network design model to a HDV-HRS network for Germany until 2050 based on German traffic data for heavy-duty trucks and estimate its costs. Comparing different fuel supply scenarios (pipeline vs. on-site), The on-site scenario results show a network consisting of 137 stations at a cost of 8.38 billion € per year in 2050 (0.40 € per vehicle km), while the centralized scenario with the same amount of stations shows a cheaper cost with 7.25 billion euros per year (0.35 € per vehicle km). The hydrogen cost (LCOH) varies from 5.59 €/kg (pipeline) to 6.47 €/kg (on-site) in 2050.  相似文献   

2.
This paper presents the economic assessment of novel refueling stations, in which through advanced and high efficiency technologies, the polygeneration of more energy services like hydrogen, electricity and heat is carried out on-site.The architecture of these polygeneration plants is realized with a modular structure, organized in more sections.The primary energy source is ammonia that represents an interesting fuel for producing more energy streams. The ammonia feeds directly the SOFC that is able to co-generate simultaneously electricity and hydrogen by coupling a high efficiency energy system with hydrogen chemical storage.Two system configurations have been proposed considering different design concepts: in the first case (Concept_1) the plant is sized for producing 100 kg/day of hydrogen and the power section is sized also for self-sustaining the plant electric power consumption, while in the second one (Concept_2) the plant is sized for producing 100 kg/day of hydrogen and the power section is sized for self-sustaining the plant electric power consumption and for generating 50 kW for the DC fast charging.The economic analysis has been carried out in the current and target scenarios, by evaluating, the levelized cost of hydrogen (LCOH), the levelized cost of electricity (LCOE), the Profitability Index (PI), Internal rate of Return (IRR) and the Discounted Payback Period (DPP).Results have highlighted that the values of the LCOH, for the proposed configurations and economic scenarios, are in the range 6–10 €/kg and the values of the LCOE range from 0.447 €/kWh to 0.242 €/kWh.In terms of PI and IRR, the best performance is achieved in the Concept_1 for the current scenario (1.89 and 8.0%, respectively). On the contrary, in the target scenario, thanks to a drastic costs reduction the co-production of hydrogen and electricity as useful outputs, becomes the best choice from all economic indexes and parameters considered.  相似文献   

3.
In this study, different hydrogen refueling station (HRS) architectures are analyzed energetically as well as economically for 2015 and 2050. For the energetic evaluation, the model published in Bauer et al. [1] is used and norm-fitting fuelings according to SAE J2601 [2] are applied. This model is extended to include an economic evaluation. The compressor (gaseous hydrogen) resp. pump (liquid hydrogen) throughput and maximum pressures and volumes of the cascaded high-pressure storage system vessels are dimensioned in a way to minimize lifecycle costs, including depreciation, capital commitment and electricity costs. Various station capacity sizes are derived and energy consumption is calculated for different ambient temperatures and different station utilizations. Investment costs and costs per fueling mass are calculated based on different station utilizations and an ambient temperature of +12 °C. In case of gaseous trucked-in hydrogen, a comparison between 5 MPa and 20 MPa low-pressure storage is conducted. For all station configurations and sizes, a medium-voltage grid connection is applied if the power load exceeds a certain limit. For stations with on-site production, the electric power load of the hydrogen production device (electrolyzer or gas reformer) is taken into account in terms of power load. Costs and energy consumption attributed to the production device are not considered in this study due to comparability to other station concepts. Therefore, grid connection costs are allocated to the fueling station part excluding the production device. The operational strategy of the production device is also considered as energy consumption of the subsequent compressor or pump and the required low-pressure storage are affected by it. All station concepts, liquid truck-supplied hydrogen as well as stations with gaseous truck-supplied or on-site produced hydrogen show a considerable cost reduction potential. Long-term specific hydrogen costs of large stations (6 dispensers) are 0.63 €/kg – 0.76 €/kg (dependent on configuration) for stations with gaseous stored hydrogen and 0.18 €/kg for stations with liquid stored hydrogen. The study focuses only on the refueling station and does not allow a statement about the overall cost-effectiveness of different pathways.  相似文献   

4.
This paper presents techno-economic modelling results of a nationwide hydrogen fuel supply chain (HFSC) that includes renewable hydrogen production, transportation, and dispensing systems for fuel cell electric buses (FCEBs) in Ireland. Hydrogen is generated by electrolysers located at each existing Irish wind farm using curtailed or available wind electricity. Additional electricity is supplied by on-site photovoltaic (PV) arrays and stored using lithium-ion batteries. At each wind farm, sizing of the electrolyser, PV array and battery is optimised system design to obtain the minimum levelised cost of hydrogen (LCOH). Results show the average electrolyser capacity factor is 64% after the integration of wind farm-based electrolysers with PV arrays and batteries. A location-allocation algorithm in a geographic information system (GIS) environment optimises the distributed hydrogen supply chain from each wind farm to a hypothetical hydrogen refuelling station in the nearest city. Results show that hydrogen produced, transported, and dispensed using this system can meet the entire current bus fuel demand for all the studied cities, at a potential LCOH of 5–10 €/kg by using available wind electricity. At this LCOH, the future operational cost of FCEBs in Belfast, Cork and Dublin can be competitive with public buses fuelled by diesel, especially under carbon taxes more reflective of the environmental impact of fossil fuels.  相似文献   

5.
Green hydrogen reduces carbon dioxide emission, advances the dependency on fossil fuels and improves the economy of the energy sector, especially in developing countries. Hydrogen is required for the green transportation sector and many other industrial applications. However, the high cost of green hydrogen production reduces the fast development of renewable energy projects based on hydrogen production. So, sizing by optimization is required to determine the optimum solutions for green hydrogen production. In this context, this paper aims to analyze three methods that can be developed and implemented for the production of green hydrogen for refueling stations using photovoltaic (PV) systems. Techno-economic models are adopted to calculate the Levelized Hydrogen Cost (LHC) for the PV grid-connected system, stand-alone PV system with batteries, and stand-alone PV system with fuel cells. The photovoltaic systems based green hydrogen refueling stations are optimized using Homer software. The optimization results of the Net Profit Cost (NPC), and the LHC permit the comparison of the three cases and the selection of the optimal solution. The analysis has shown that a 3 MWp grid-connected PV system represents a promising green hydrogen production at an LHC of 5.5 €/kg. The system produces 58 615 kg of green hydrogen per year reducing carbon dioxide emission by 8209 kg per year. The LHC in the stand-alone PV system with batteries, and stand-alone PV system with fuel cells are 5.74 €/kg and 7.38 €/kg, respectively.  相似文献   

6.
This paper sheds the light on the future of green hydrogen in Tunisia. So, a detailed economic assessment and evaluation of the Levelized Hydrogen Cost (LHC) and the Net Profit (NP) of a Photovoltaic (PV) Hydrogen Refueling Station (HRS) are presented and discussed. Tunisia is characterized by its high PV potential which makes the production of electricity from solar energy an effective alternative source. However, due to the regulations and issues related to the connection of medium PV scale to the power grid, the energy produced from renewable sources (RS) is still less than 3% of the total produced electricity. On the other hand, the price of hydrocarbon fuels is still increasing. The gap between production and total demand in hydrocarbons has created a deficit in the primary energy balance. Therefore, the production of hydrogen from solar energy for refueling Fuel Cell Vehicles (FCV)s consists of a promising solution to boost the development of the country, reduce hydrocarbon fuels consumption, and protect the environment. The sizing of a small PV-HRS to produce 150 kg of hydrogen per day shows the necessity to install PV systems with a total Direct Current (DC) capacity of 1.89 MWp. The Initial Cost (IC) analysis shows that while the PV system cost represents 48.5% of the total IC, the IC of electrolysers represents 41%. The storage system cost is approximately equal to 3.2% of the total IC. The LHC is equal to 3.32€/kg with a total IC of 2.34 million €.  相似文献   

7.
Green hydrogen produced from intermittent renewable energy sources is a key component on the way to a carbon neutral planet. In order to achieve the most sustainable, efficient and cost-effective solutions, it is necessary to match the dimensioning of the renewable energy source, the capacity of the hydrogen production and the size of the hydrogen storage to the hydrogen demand of the application.For optimized dimensioning of a PV powered hydrogen production system, fulfilling a specific hydrogen demand, a detailed plant simulation model has been developed. In this study the model was used to conduct a parameter study to optimize a plant that should serve 5 hydrogen fuel cell buses with a daily hydrogen demand of 90 kg overall with photovoltaics (PV) as renewable energy source. Furthermore, the influence of the parameters PV system size, electrolyser capacity and hydrogen storage size on the hydrogen production costs and other key indicators is investigated. The plant primarily uses the PV produced energy but can also use grid energy for production.The results show that the most cost-efficient design primarily depends on the grid electricity price that is available to supplement the PV system if necessary. Higher grid electricity prices make it economically sensible to invest into higher hydrogen production and storage capacity. For a grid electricity price of 200 €/MWh the most cost-efficient design was found to be a plant with a 2000 kWp PV system, an electrolyser with 360 kW capacity and a hydrogen storage of 575 kg.  相似文献   

8.
This paper deals with the analysis of the economy of scale at on-site hydrogen refueling stations which produce hydrogen through steam methane reforming or water electrolysis, in order to identify the optimum energy mix as well as the total construction cost of hydrogen refueling stations in Korea. To assess the economy of scale at on-site hydrogen stations, the unit hydrogen costs at hydrogen stations with capacities of 30 Nm3/h, 100 Nm3/h, 300 Nm3/h, and 700 Nm3/h were estimated. Due to the relatively high price of natural gas compared to the cost of electricity in Korea, water electrolysis is more economical than steam methane reforming if the hydrogen production capacity is small. It seems to be the best strategy for Korea to construct small water electrolysis hydrogen stations with production capacities of 100 Nm3/h or less until 2020, and to construct steam methane reforming hydrogen stations with production capacities of 300 Nm3/h or more after 2025.  相似文献   

9.
A techno-economic analysis of a hydrogen valley is carried out in this paper. A hydrogen generator fed by a wind farm (WF) and/or a photovoltaic (PV) plant supplies four end-users: a stationary fuel cell, a hydrogen refuelling station, the injection in the natural gas pipeline and, in case of sufficient hydrogen surplus, a biological hydrogen methanation (BHM) process.The results demonstrated that an efficiency improvement and a reduction in hydrogen production costs arise from a balanced supply from wind and solar energy. Without the inclusion of a BHM process, hydrogen production costs lower than 7 €/kg were achieved by a hydrogen generator using 10–12% of the PV + WF annual energy with a PV share of 20%–50%. The hydrogen production costs were further reduced to 5 €/kg by introducing a BHM process and increasing the percentage of electrical energy supplied by the PV + WF system to 25% of its overall production.  相似文献   

10.
India is one of the most populous countries in the world, and this has implications for its energy consumption. The country's electricity generation and road transport are mostly dominated by fossil fuels. As such, this study assessed the techno-economics and environmental impact of a solar photovoltaic power plant for both electricity and hydrogen production at five different locations in India (i.e., Chennai, Indore, Kolkata, Ludhiana, and Mumbai). The hydrogen load represents a refueling station for 20 hydrogen fuel cell vehicles with a tank capacity of 5 kg for each location. According to the results, the highest hydrogen production occurred at Kolkata with 82,054 kg/year, followed by Chennai with 79,030 kg/year. Ludhiana, Indore, and Mumbai followed with 78,524 kg/year, 76,935 kg/year and 74,510 kg/year, respectively. The levelized cost of energy (LCOE) for all locations ranges between 0.41 and 0.48 $/kWh. Mumbai recorded the least LCOH of 3.00 $/kg. The total electricity that could be generated from all five cities combined was found to be about 25 GWh per annum, which translates to an avoidable emission of 20,744.07 metric tons of CO2e. Replacing the gasoline that could be used to fuel the vehicles with hydrogen will result in a CO2 reduction potential of 2452.969 tons per annum in India. The findings indicate that the various optimized configurations at the various locations could be economically viable to be developed.  相似文献   

11.
In Norway, where nearly 100% of the power is hydroelectric, it is natural to consider water electrolysis as the main production method of hydrogen for zero-emission transport. In a startup market with low demand for hydrogen, one may find that small-scale WE-based hydrogen production is more cost-efficient than large-scale production because of the potential to reach a high number of operating hours at rated capacity and high overall system utilization rate. Two case studies addressing the levelized costs of hydrogen in local supply systems have been evaluated in the present work: (1) Hydrogen production at a small-scale hydroelectric power plant (with and without on-site refueling) and (2) Small hydrogen refueling station for trucks (with and without on-site hydrogen production). The techno-economic calculations of the two case studies show that the levelized hydrogen refueling cost at the small-scale hydroelectric power plant (with a local station) will be 141 NOK/kg, while a fleet of 5 fuel cell trucks will be able to refuel hydrogen at a cost of 58 NOK/kg at a station with on-site production or 71 NOK/kg at a station based on delivered hydrogen. The study shows that there is a relatively good business case for local water electrolysis and supply of hydrogen to captive fleets of trucks in Norway, particularly if the size of the fleet is sufficiently large to justify the installation of a relatively large water electrolyzer system (economies of scale). The ideal concept would be a large fleet of heavy-duty vehicles (with a high total hydrogen demand) and a refueling station with nearly 100% utilization of the installed hydrogen production capacity.  相似文献   

12.
This work investigates the performance of a fluidized-bed membrane reactor for pure hydrogen production. A techno-economic assessment of a plant with the production capacity of 100 kgH2/day was carried out, evaluating the optimum design of the system in terms of reactor size (diameter and number of membranes) and operating pressures. Starting from a biomass source, hydrogen production through autothermal reforming of two different feedstock, biogas and biomethane, is compared.Results in terms of efficiency indicates that biomethane outperforms biogas as feedstock for the system, both from the reactor (97.4% vs 97.0%) and the overall system efficiency (63.7% vs 62.7%) point of views. Nevertheless, looking at the final LCOH, the additional cost of biomethane leads to a higher cost of the hydrogen produced (4.62 €/kgH2@20 bar vs 4.39 €/kgH2@20 bar), indicating that at the current price biogas is the more convenient choice.  相似文献   

13.
This work compares the costs of three electrolysis-based hydrogen supply systems for heavy road transportation: a decentralized, off-grid system for hydrogen production from wind and solar power (Dec-Sa); a decentralized system connected to the electricity grid (Dec-Gc); and a centralized grid-connected electrolyzer with hydrogen transported to refueling stations (Cen-Gc). A cost-minimizing optimization model was developed in which the hydrogen production is designed to meet the demand at refueling stations at the lowest total cost for two timeframes: one with current electricity prices and one with estimated future prices. The results show that: For most of the studied geographical regions, Dec-Gc gives the lowest costs of hydrogen delivery (2.2–3.3€/kgH2), while Dec-Sa entails higher hydrogen production costs (2.5–6.7€/kgH2). In addition, the centralized system (Cen-Gc) involves lower costs for production and storage than the grid-connected decentralized system (Dec-Gc), although the additional costs for hydrogen transport increase the total cost (3.5–4.8€/kgH2).  相似文献   

14.
Hydrogen is one of the energy carriers that can be produced using different techniques. Combining multiple energy sources can enhance hydrogen production and meet other electrical demands. The hybrid arrangement allows the produced hydrogen to be stored and used when the electrical energy sources are not adequate. In this study, utilizing the meteorological data was investigated using HOMER (Hybrid Optimization of Multiple Energy Resources) software for the optimal solution. The results demonstrated that the “best-optimized system has 270 kW of photovoltaic (PV), 1 unit of 300 kW of wind turbine (WT), 500 kW of electrolyzer, 100 kg/L of the hydrogen tank, 70 units of 1 kWh lithium-ion battery, and 472 kW of the converter. The selected hybrid energy system has the lowest Levelized cost of energy (LCOE), Levelized cost of hydrogen (LCOH), and net present cost (NPC) of $/kg 0.6208, $/kg 9.34, and $ 484,360.00 respectively which judged the system to be the best choice for the proposed hydrogen project in AI-Kharj. This investigation will help stakeholders and policymakers optimize hybrid energy systems that economically meet the hydrogen production and refueling station demands of the AI-Kharj community.  相似文献   

15.
Development of efficient hydrogen refueling station (HRS) is highly desirable to reduce the hydrogen cost and hence the life cycle expense of fuel cell vehicles (FCVs), which is hindering the large scale application of hydrogen mobility. In this work, we demonstrate the optimization of gaseous HRS process and control method to perform fast and efficient refueling, with reduced energy consumption and increased daily fueling capacity. The HRS was modeled with thermodynamics using a numerical integration method and the accuracy for hydrogen refueling simulation was confirmed by experimental data, showing only 2 °C of temperature rise deviation. The refueling protocols for heavy duty FCVs were first optimized, demonstrating an average fueling rate of 2 kg/min and pre-cooling demand of less than 7 kW for 35 MPa type III tanks. Fast refueling of type IV tanks results in more significant temperature rise, and the required pre-cooling temperature is lowered by 20 K to achieve comparable fueling rate. The station process was also optimized to improve the daily fueling capacity. It is revealed that the hydrogen storage amount is cost-effective to be 25–30% that of the nominal daily refueling capacity, to enhance the refueling performance at peak time and minimize the start and stop cycles of compressor. A novel control method for cascade replenishment was developed by switching among the three banks in the order of decreased pressure, and results show that the daily refueling capacity of HRS is increased by 5%. Therefore, the refueling and station process optimization is effective to promote the efficiency of gaseous HRS.  相似文献   

16.
Large-scale hydrogen production facilities will be required to supply the chemical energy demand of certain industries in the future. The case for such production plants based on individual adapted PV and wind farms has been addressed in several studies. However, most studies focus on an island solution of the evaluated plant and therefore, do not allow grid assistance which significantly reduce the installed capacity of the corresponding units. To address this issue, we developed a tool with a linear programming approach to evaluate any location around the world for its renewable hydrogen production costs and the influence on the plant layout depending on its interaction with the grid. A detailed techno-economic evaluation has been performed for five locations where hydrogen production costs in the range of 4–6 €2020/kg have been retrieved. Furthermore, it is shown that with perspective cost data the costs can further be reduced to 2.50 €2020/kg.  相似文献   

17.
Offshore wind is currently the most rapidly growing renewable energy source on a global scale. The increasing deployment and high economic potential of offshore wind have prompted considerable interest in its use for hydrogen production. In this context, this study develops a Monte Carlo-based framework for assessing the competitiveness of offshore wind-to-hydrogen production. The framework is designed to evaluate the location-based variability of the levelised cost of hydrogen (LCOH) and explore the uncertainty that exists in the long-term planning of hydrogen production installations. The case study of Poland is presented to demonstrate the application of the framework. This work provides a detailed analysis of the LCOH considering the geographical coordinates of 23 planned offshore wind farms in the Baltic Sea. Moreover, it presents a comparative analysis of hydrogen production costs from offshore and onshore wind parks in 2030 and 2050. The results show that hydrogen from offshore wind could range between €3.60 to €3.71/kg H2 in 2030, whereas in 2050, it may range from €2.05 to €2.15/kg H2.  相似文献   

18.
Electron beam plasma methane pyrolysis is a hydrogen production pathway from natural gas without direct CO2 emissions. In this work, two concepts for a technical implementation of the electron beam plasma pyrolysis in a large-scale hydrogen production plant are presented and evaluated in regards of efficiency, economics and carbon footprint. The potential of this technology is identified by an assessment of the results with the benchmark technologies steam methane reforming, steam methane reforming with carbon capture and storage as well as water electrolysis. The techno-economic analysis shows levelized costs of hydrogen for the plasma pyrolysis between 2.55 €/kg H2 and 5.00 €/kg H2 under the current economic framework. Projections for future price developments reveal a significant reduction potential for the hydrogen production costs, which support the profitability of plasma pyrolysis under certain scenarios. In particular, water electrolysis as direct competitor with renewable electricity as energy supply shows a considerably higher specific energy consumption leading to economic advantages of plasma pyrolysis for cost-intensive energy sources and a high degree of utilization. Finally, the carbon footprint assessment indicates the high potential for a reduction of life cycle emissions by electron beam plasma methane pyrolysis (1.9 kg CO2 eq./kg H2 – 6.4 kg CO2 eq./kg H2, depending on the electricity source) compared to state-of-the-art hydrogen production technology (10.8 kg CO2 eq./kg H2).  相似文献   

19.
The rollout of hydrogen fuel cell electric vehicles (FCEVs) requires the initial deployment of an adequate network of hydrogen refueling stations (HRSs). Such deployment has proven to be challenging because of the high initial capital investment, the risk associated with such an investment, and the underutilization of HRSs in early FCEV markets. Because the compression system at an HRS represents about half of the station's initial capital cost, novel concepts that would reduce the cost of compression are needed. Argonne National Laboratory with support from the U.S. Department of Energy's (DOE) Fuel Cell Technologies Office (FCTO) has evaluated the potential for delivering hydrogen in high-pressure tube-trailers as a way of reducing HRS compression and capital costs. This paper describes a consolidation strategy for a high-pressure (250-bar) tube-trailer capable of reducing the compression cost at an HRS by about 60% and the station's initial capital investment by about 40%. The consolidation of tube-trailers at pressures higher than 250 bar (e.g., 500 bar) can offer even greater HRS cost-reduction benefits. For a typical hourly fueling-demand profile and for a given compression capacity, consolidating hydrogen within the pressure vessels of a tube-trailer can triple the station's capacity for fueling FCEVs. The high-pressure tube-trailer consolidation concept could play a major role in enabling the early, widespread deployment of HRSs because it lowers the required HRS capital investment and distributes the investment risk among the market segments of hydrogen production, delivery, and refueling.  相似文献   

20.
Population growth and the expansion of industries have increased energy demand and the use of fossil fuels as an energy source, resulting in release of greenhouse gases (GHG) and increased air pollution. Countries are therefore looking for alternatives to fossil fuels for energy generation. Using hydrogen as an energy carrier is one of the most promising alternatives to replace fossil fuels in electricity generation. It is therefore essential to know how hydrogen is produced. Hydrogen can be produced by splitting the water molecules in an electrolyser, using the abondand water resources, which are covering around ? of the Earth's surface. Electrolysers, however, require high-quality water, with conductivity in the range of 0.1–1 μS/cm. In January 2018, there were 184 offshore oil and gas rigs in the North Sea which may be excellent sites for hydrogen production from seawater. The hydrogen production process reported in this paper is based on a proton exchange membrane (PEM) electrolyser with an input flow rate of 300 L/h. A financially optimal system for producing demineralized water from seawater, with conductivity in the range of 0.1–1 μS/cm as the input for electrolyser, by WAVE (Water Application Value Engine) design software was studied. The costs of producing hydrogen using the optimised system was calculated to be US$3.51/kg H2. The best option for low-cost power generation, using renewable resources such as photovoltaic (PV) devices, wind turbines, as well as electricity from the grid was assessed, considering the location of the case considered. All calculations were based on assumption of existing cable from the grid to the offshore, meaning that the cost of cables and distribution infrastructure were not considered. Models were created using HOMER Pro (Hybrid Optimisation of Multiple Energy Resources) software to optimise the microgrids and the distributed energy resources, under the assumption of a nominal discount rate, inflation rate, project lifetime, and CO2 tax in Norway. Eight different scenarios were examined using HOMER Pro, and the main findings being as follows:The cost of producing water with quality required by the electrolyser is low, compared with the cost of electricity for operation of the electrolyser, and therefore has little effect on the total cost of hydrogen production (less than 1%).The optimal solution was shown to be electricity from the grid, which has the lowest levelised cost of energy (LCOE) of the options considered. The hydrogen production cost using electricity from the grid was about US$ 5/kg H2.Grid based electricity resulted in the lowest hydrogen production cost, even when costs for CO2 emissions in Norway, that will start to apply in 2025 was considered, being approximately US$7.7/kg H2.From economical point of view, wind energy was found to be a more economical than solar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号