首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments to investigate the catalytic pyrolysis of methane using an iron ore-based catalyst were carried out to optimize catalytic activity and examine the purity of the carbon produced from the process for the first time. Ball milling of the iron ore at 300 rpm for varying times – from 30 to 330 min – was studied to determine the effect of milling time on methane conversion. Optimal milling for 270 min led to a five-fold increase in methane conversion from ca. 1%–5%. Further grinding resulted in a decline of methane conversion to 4% shown by SEM to correspond to an increase in particle size caused by agglomeration. Data from Raman and Mössbauer spectroscopy and H2 temperature programmed reduction indicated a change in phase from magnetite to maghemite and hematite (at the particle surface) as the grinding time increased. Analysis of the carbon produced as a byproduct of the reaction indicated a highly pure material with the potential to be used as an additive for steel production.  相似文献   

2.
This review highlights recent developments and future perspectives in COx-free hydrogen production through methane pyrolysis. We give detailed discussions on thermal and catalytic methane cracking into hydrogen and carbon. Various types of solid and liquid catalysts were reviewed in terms of hydrogen selectivity, methane conversion, and deactivation. Some pilot scale technology was discussed; however, large-scale industrialisation is impeded by rapid solid catalyst deactivation, low-priced carbon (by-product) of molten catalysts, harsh conditions for reactor materials, and performance of stable molten catalysts. For catalytic methane cracking in molten catalysts (salt or metal), substantial advances in catalyst development, product separation, and reactor design are still required to commercialise methane pyrolysis for hydrogen production. To provide guidance to future works in this area, the review is specifically focused on (i) design of catalysts (ii) recent developments of molten salt-based methane cracking, (iii) reactor design and process design.  相似文献   

3.
Electron beam plasma methane pyrolysis is a hydrogen production pathway from natural gas without direct CO2 emissions. In this work, two concepts for a technical implementation of the electron beam plasma pyrolysis in a large-scale hydrogen production plant are presented and evaluated in regards of efficiency, economics and carbon footprint. The potential of this technology is identified by an assessment of the results with the benchmark technologies steam methane reforming, steam methane reforming with carbon capture and storage as well as water electrolysis. The techno-economic analysis shows levelized costs of hydrogen for the plasma pyrolysis between 2.55 €/kg H2 and 5.00 €/kg H2 under the current economic framework. Projections for future price developments reveal a significant reduction potential for the hydrogen production costs, which support the profitability of plasma pyrolysis under certain scenarios. In particular, water electrolysis as direct competitor with renewable electricity as energy supply shows a considerably higher specific energy consumption leading to economic advantages of plasma pyrolysis for cost-intensive energy sources and a high degree of utilization. Finally, the carbon footprint assessment indicates the high potential for a reduction of life cycle emissions by electron beam plasma methane pyrolysis (1.9 kg CO2 eq./kg H2 – 6.4 kg CO2 eq./kg H2, depending on the electricity source) compared to state-of-the-art hydrogen production technology (10.8 kg CO2 eq./kg H2).  相似文献   

4.
Feasibility analysis of methane reforming by hydrogen sulfide for hydrogen production from technical and economical viewpoints was made. An improved Hydrogen Sulfide Methane Reformation (H2SMR) process flowsheet was proposed in order to compare its production costs with those of Steam Methane Reformation (SMR) conventional process. Major findings were: high production of hydrogen, a partial self-sustainability process since some of the hydrogen produced could be used as an energy source, no greenhouse gases generated, common sizes of main equipment for a typical H2 production and the possibility of eliminating Claus plants. Aspen Plus® V8.4 simulation software was used. Results showed H2SMR is a more economical source of H2 production than SMR conventional process, with an estimated cost of 1.41 $/kg.  相似文献   

5.
Catalytic methane decomposition (CMD) was studied by employing biochar and activated char of biosolids’ origin under different reaction temperatures and methane concentrations. Higher reaction temperatures and lower inlet methane concentrations were found to be favourable for achieving higher methane conversion. A maximum initial methane conversion of 71.0 ± 2.5 and 65.2 ± 2.3% was observed for activated char and biochar, respectively at 900 °C and for 10% CH4 in N2 within the first 0.5 h of experiment. Active sites from oxygen containing carboxylic acid functional groups and smaller pore volume and pore diameter were attributed to assist in higher initial methane conversion for biochar and activated char respectively. However, rapid blockages of active sites and surfaces of biochar and activated char due to carbon formation have caused a rapid decline in methane conversion values in the first 0.5 h. Later on, crystalline nature of the newly formed carbon deposits due to their higher catalytic activity have stabilised methane conversion values for an extended experimental period of 6 h for both biochar and activated char. The final conversion values at the end of 6 h experiment with biochar and activated char at 900 °C and for 10% CH4 in N2, were found to be 40 ± 1.9 and 35 ± 1.6% respectively. Analysing carbon deposits in detail revealed that carbon nanofiber type structures were observed at 700 °C while nanospheres of carbon were found at 900 °C.  相似文献   

6.
Hydrogen will play an integral role in achieving net-zero emissions by 2050. Many studies have been focusing on green hydrogen, but this method is highly electricity intensive. Alternatively, methane pyrolysis can produce hydrogen without direct CO2 emissions and with modest electricity inputs, serving as a bridge from fossil fuels to renewable energies. Microwaves are an efficient method of adding the required energy for this endothermic reaction. This study introduces a new method of CO2-free hydrogen production via non-plasma methane pyrolysis using microwaves and carbon products of this process. Carbon particles in the fluidized bed absorb microwave energy and create a hot medium (>1200 °C) in contact with flowing methane. As a result, methane decomposes into hydrogen and solid carbon achieving over 90% hydrogen selectivity with ∼500 cumulative hours of experiments This modular pyrolysis system can be built anywhere with access to natural gas and electricity, enabling distributed hydrogen production.  相似文献   

7.
Tierga and Ilmenite Fe-based ores are studied for the first time in the catalytic decomposition of methane (CDM) for the production of carbon dioxide-free hydrogen and carbon nanomaterials. Tierga exhibits superior catalytic performance at 800 °C. The effect of the reaction temperature, space velocity and reducing atmosphere in the catalytic decomposition of methane is evaluated using Tierga. The highest stability and activity (70 vol% hydrogen concentration) is obtained at 850 °C using methane as a reducing agent. Reduction with methane causes the fragmentation of the iron active phase and inhibits the formation of iron carbide, improving its activity and stability in the CDM. Hybrid nanomaterials composed of graphite sheets and carbon nanotubes with a high degree of graphitization are obtained. Considering its catalytic activity, the carbon quality, and the low cost of the material, Tierga has a competitive performance against synthetic iron-catalysts for carbon dioxide-free hydrogen and solid carbon generation.  相似文献   

8.
The aim of this work was to combine microwave heating with the use of low-cost granular activated carbon as a catalyst for the production of CO2-free hydrogen by methane decomposition in a fixed bed quartz-tube flow reactor. In order to compare the results achieved, conventional heating was also applied to the catalytic decomposition reaction of methane over the activated carbon. It was found that methane conversions were higher under microwave conditions than with conventional heating when the temperature measured was lower than or equal to . However, when the temperature was increased, the difference between the conversions under microwave and conventional heating was reduced. The influence of volumetric hourly space velocity (VHSV) on the conversion tests using both microwave and conventional heating was also studied. In general, there is a substantial initial conversion, which declines sharply during the first stages of the reaction but tends to stabilise with time. An increase in the VHSV has a negative effect on CH4 conversion, and even more so in the case of microwave heating. Nevertheless, the conversions obtained in the microwave device at the beginning of the experiments are, in general, better than the conversions reported in other works which also use a carbonaceous-based catalyst. Additionally, the formation of carbon nanofibres in one of the microwave experiments is also reported.  相似文献   

9.
This study introduces an innovative process of generating hydrogen-rich gas from biomass through the catalytic pyrolysis of biomass in a two-stage fixed bed reactor system. Water hyacinth was used as the biomass feedstock. The effects of various factors such as pyrolysis temperature, catalytic bed temperature, residence time, catalyst, and the nickel content of the catalyst on the pyrolysis productivity were investigated and the yields of H2, CO, CH4, and CO2 were obtained. Results showed that the high productivity of hydrogen can be obtained particularly by increasing the catalytic bed temperature, residence time, and catalysts. The favorable reaction conditions are as follows: a first-stage pyrolysis temperature of 650 °C–700 °C, a second-stage catalytic bed temperature of 800 °C, a catalytic pyrolysis reaction time of 17 min, and a nickel content of 9% (wt %).  相似文献   

10.
A novel thermal plasma process was developed, which enables economically viable commercial-scale hydrogen and carbon black production. Key aspects of this process are detailed in this work. Selectivity and yield of both solid, high-value carbon and gaseous hydrogen are given particular attention. For the first time, technical viability is demonstrated through lab scale reactor data which indicate methane feedstock conversions of >99%, hydrogen selectivity of >95%, solid recovery of >90%, and the ability to produce carbon particles of varying crystallinity having the potential to replace traditional furnace carbon black. The energy intensity of this process was established based on real-time operation data from the first commercial plant utilizing this process. In its current stage, this technology uses around 25 kWh per kg of H2 produced, much less than water electrolysis which requires approximately 60 kWh per kg of H2 produced. This energy intensity is expected to be reduced to 18–20 kWh per kg of hydrogen with improved heat recovery and energy optimization.  相似文献   

11.
The catalytic mechanism of red mud (RM) on the pyrolysis of sewage sludge was investigated. The thermogravimetric data were used to study the kinetic characteristics by using a discrete distributed activation energy model (DAEM) to clarify the effects of three main components (Fe2O3, Al2O3, SiO2) in the RM on the pyrolysis of organic matters in sewage sludge. The modeling results showed that the pyrolysis of organic matters, especially at the higher temperature stage, was promoted by Fe2O3 and Al2O3 in the RM. Adding Fe2O3 or the RM alone could reduce the mean activation energy of sewage sludge pyrolysis by 13.9 and 20.1 kJ mol?1, respectively. The modeling results were validated by pyrolysis experiments of raw sludge with different additives at 600, 700, 800, and 900 °C. The experimental results showed that the addition of Al2O3, Fe2O3 or the RM could produce more gas than the addition of SiO2, especially at high temperatures. Fe2O3 and Al2O3 acted as catalysts in the tar decomposition by in-situ catalyzing the cracking of CC and CH bonds to produce more gases. Especially, Fe2O3 and Al2O3 increased the H2 yield from sewage sludge pyrolysis at 700, 800, and 900 °C by 268.5 and 50.7%, 111.1 and 56.0%, 10.9 and 10.3%, respectively. The char obtained from pyrolysis of sewage sludge with the RM possessed magnetic property, which has various potential applications. The research indicates that the RM is an efficient catalyst in the pyrolysis of sewage sludge.  相似文献   

12.
Microwave-induced catalytic pyrolysis of end-of-life tires was conducted for the purpose of producing hydrogen-enriched syngas. Tire derived char (TDC) was employed as the catalyst due to its superiorities of excellent microwave-absorbing ability, remarkable catalytic effect, and cost-effectiveness. The effects of the carbon structure, microwave power, and tire-to-catalysts ratio on the hydrogen yield and conversion rate were investigated. TDC had two functions in promoting the production of hydrogen in microwave-induced pyrolysis (MP). One was facilitating the degradation of tar into gas, and the other was initiating the catalytic reforming of light hydrocarbons into hydrogen. The highest hydrogen yield (27.81 mmol/g) and conversion rate (85.57%) were obtained under optimal experimental conditions. The as-generated TDC in MP could be reused as a catalyst for MP, thus improving the economics of this method significantly. This research provides an efficient and economical strategy for the microwave-induced pyrolysis of end-of-life tires to produce hydrogen-rich syngas.  相似文献   

13.
The performance of hydrogen production via steam methane reforming (SMR) is evaluated using exergy analysis, with emphasis on exergy flows, destruction, waste, and efficiencies. A steam methane reformer model was developed using a chemical equilibrium model with detailed heat integration. A base-case system was evaluated using operating parameters from published literature. Reformer operating parameters were varied to illustrate their influence on system performance. The calculated thermal and exergy efficiencies of the base-case system are lower than those reported in literature. The majority of the exergy destruction occurs due to the high irreversibility of chemical reactions and heat transfer. A significant amount of exergy is wasted in the exhaust stream. The variation of reformer operating parameters illustrated an inverse relationship between hydrogen yield and the amount of methane required by the system. The results of this investigation demonstrate the utility of exergy analysis and provide guidance for where research and development in hydrogen production via SMR should be focused.  相似文献   

14.
A series of experiments was conducted to study the deactivation and regeneration of activated carbon catalyst used for methane thermocatalytic decomposition to produce hydrogen. The catalyst becomes deactivated due to carbon deposition and six decomposition cycles of methane at temperatures of 850 and 950 °C, and five cycles of regeneration by using CO2 at temperatures of 900, 950 and 1000 °C were carried out to evaluate the stability of the catalyst. The experiment was conducted by using a thermobalance by monitoring the mass gain during decomposition or the mass lost during the regeneration with time. The initial activity and the ultimate mass gain of the catalyst decreased after each regeneration cycle at both reaction temperatures of 850 and 950 °C, but the amount is smaller under the more severe regenerating conditions. For the reaction at 950 °C, comparison between the first and sixth reaction cycles shows that the initial activity decreased by 69, 51 and 42%, while the ultimate mass gain decreased by 62%, 36% and 16% when CO2 gasification carried out at 900, 950 and 1000 °C respectively. Temperature -programmed oxidation profiles for the deactivated catalyst at reaction temperature of 950 °C and after several cycles showed two peaks which are attributed to different carbon characteristics, while one peak was obtained when the experiment was carried out at 850 °C. In conclusion, conducting methane decomposition at 950 °C and regeneration at 1000 °C showed the lowest decrease in the mass gain with reaction cycles.  相似文献   

15.
Bubble reactors using molten metal alloys (e.g, nickel-bismuth and copper-bismuth) with strong catalytic activity for methane decomposition are an emerging technology to lower the carbon intensity of hydrogen production. Methane decomposition occurs non-catalytically inside the bubbles and catalytically at the gas-liquid interface. The reactor performance is therefore affected by the hydrodynamics of bubble flow in molten metal, which determines the evolution of the bubble size distribution and of the gas holdup along the reactor height. A reactor model is first developed to rigorously account for the coupling of hydrodynamics with catalytic and non-catalytic reaction kinetics. The model is then validated with previously reported experimental data on methane decomposition at several temperatures in bubble columns containing a molten nickel-bismuth alloy. Next, the model is applied to optimize the design of multitubular catalytic bubble reactors at industrial scales. This involves minimizing the total liquid metal volume for various tube diameters, melt temperatures, and percent methane conversions at a specified hydrogen production rate. For example, an optimized reactor consisting of 891 tubes, each measuring 0.10 m in diameter and 2.11 m in height, filled with molten Ni0·27Bi0.73 at 1050 °C and fed with pure methane at 17.8 bar, may produce 10,000 Nm3.h?1 of hydrogen with a methane conversion of 80% and a pressure drop of 1.6 bar. The tubes could be heated in a fired heater by burning either a fraction of the produced hydrogen, which would prevent CO2 generation, or other less expensive fuels.  相似文献   

16.
Methane pyrolysis for the production of hydrogen and solid carbon was studied in plasma reactor PlasGas equipped with a DC plasma torch with the arc stabilized by a water vortex. Steam plasma is produced by direct contact of electric arc discharge with water surrounding the arc column in a cylindrical torch chamber. The composition of the gas produced was compared with the results of the equilibrium calculations for different flow rates of input methane. We have found that for the net plasma power 52 kW the optimal flow rate of the input methane was between 200 slm and 300 slm, for which high methane conversions of 75% and 80% are achieved. For the flow rate of 500 slm, the methane conversion is only 60%; however, the output still consists of a mixture of hydrogen, methane and solid carbon, without other unwanted components. For the flow rate of 100 slm, the methane conversion is 88%. For 100 and 200 slm of input methane the energy excess for the reaction with respect to the calculated value is 16 kW and 4 kW. On the other hand, for 300 and 500 slm of input methane we have the energy lack of 10 kW and 38 kW. The solid carbon produced was composed of well-defined spherical particles of the size about 1 μm. Comparison with the steam and dry reforming of methane in the same system shows that the presence of oxygen increases the methane conversion, despite lower available energy produced.  相似文献   

17.
Hydrogen sulfide (H2S) methane (CH4) reformation (H2SMR) (2H2S + CH4 = CS2 + 4H2) is a potentially viable process for the removal of H2S from sour natural gas resources or other methane containing gases. Unlike steam methane reformation that generates carbon dioxide as a by-product, H2SMR produces carbon disulfide (CS2), a liquid under ambient temperature and pressure—a commodity chemical that is also a feedstock for the synthesis of sulfuric acid. Pinch point analyses for H2SMR were conducted to determine the reaction conditions necessary for no carbon lay down to occur. Calculations showed that to prevent solid carbon formation, low inlet CH4 to H2S ratios are needed. In this paper, we analyze H2SMR with either a cryogenic process or a membrane separation operation for production of either liquid or gaseous hydrogen. Of the three H2SMR hydrogen production flowsheets analyzed, direct liquid hydrogen generation has higher first and second law efficiencies of exceeding 80% and 50%, respectively.  相似文献   

18.
Thermocatalytic decomposition of methane over activated carbon acting as a catalyst is proposed as a potential alternative for hydrogen production. However, over a certain duration catalyst becomes deactivated due to intensive carbon deposition.  相似文献   

19.
20.
A series of bed collapse tests were conducted for determining the dense fluidization flow rate of a gas-solid mixture in a micro-channel fluidized bed reactor, and a separate simulation was created for calculating the reactor conversion and temperature of the catalytic methane pyrolysis. The minimum fluidization and minimum bubbling flow rates were determined to be 3.04 and 8.07 sccm for a 2 × 4 mm2 reactor channel with an average voidage of 0.57; 6.21 and 15.9 sccm for a 4 × 6 mm2 channel with an average voidage of 0.42, respectively. By building a correlation between these critical velocities and the cross-sectional area of the fluidized bed reactor channel, the dense fluidization flow rate at the micro-/mini-channel level with an internal diameter range from 0.3 to 1 mm is predicted between 1.47 to 4.21 sccm. In the simulation, an internal diameter of 0.6 mm, a 10-kW solar input rate, and an initial gas flow rate from 0.08 to 0.23 sccm that expands to 1.5–4.3 ccm at the reaction temperature, are considered as the optimal conditions to maintain a reasonable conversion of methane pyrolysis and to keep the mixed fluid in the dense fluidization within the laminar flow range. The conversion of 79% under these conditions was calculated numerically and found to be promising compared to literature reports. An additional force analysis on a single carbon black particle is shown with different reactor orientations to validate the experimental data and simulation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号