首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In this paper, the hydrogen storage properties and reaction mechanism of the 4MgH2 + LiAlH4 composite system with the addition of Fe2O3 nanopowder were investigated. Temperature-programmed-desorption results show that the addition of 5 wt.% Fe2O3 to the 4MgH2 + LiAlH4 composite system improves the onset desorption temperature to 95 °C and 270 °C for the first two dehydrogenation stage, which is lower 40 °C and 10 °C than the undoped composite. The dehydrogenation and rehydrogenation kinetics of 5 wt.% Fe2O3-doped 4MgH2 + LiAlH4 composite were also improved significantly as compared to the undoped composite. Differential scanning calorimetry measurements indicate that the enthalpy change in the 4MgH2–LiAlH4 composite system was unaffected by the addition of Fe2O3 nanopowder. The Kissinger analysis demonstrated that the apparent activation energy of the 4MgH2 + LiAlH4 composite (125.6 kJ/mol) was reduced to 117.1 kJ/mol after doping with 5 wt.% Fe2O3. Meanwhile, the X-ray diffraction analysis shows the formation of a new phase of Li2Fe3O4 in the doped composite after the dehydrogenation and rehydrogenation process. It is believed that Li2Fe3O4 acts as an actual catalyst in the 4MgH2 + LiAlH4 + 5 wt.% Fe2O3 composite which may promote the interaction of MgH2 and LiAlH4 and thus accelerate the hydrogen sorption performance of the MgH2 + LiAlH4 composite system.  相似文献   

2.
Study on the catalytic roles of MgFe2O4 on the dehydrogenation performance of LiAlH4 was carried out for the first time. Notable improvement on the dehydrogenation of LiAlH4–MgFe2O4 compound was observed. The initial decomposition temperatures for the catalyzed LiAlH4 were decreased to 95 °C and 145 °C for the first and second stage reactions, which were 48 °C and 28 °C lower than the milled LiAlH4. As for the desorption kinetics performance, the MgFe2O4 doped-LiAlH4 sample was able to desorb faster with a value of 3.5 wt% of hydrogen in 30 min (90 °C) while the undoped LiAlH4 was only able to desorb 0.1 wt% of hydrogen. The activation energy determined from the Kissinger analysis for the first two desorption reactions were 73 kJ/mol and 97 kJ/mol; which were 31 and 17 kJ/mol lower as compared to the milled LiAlH4. The X-ray diffraction result suggested that the MgFe2O4 had promoted significant improvements by reducing the LiAlH4 decomposition temperature and faster desorption kinetics through the formation of active species of Fe, LiFeO2 and MgO that were formed during the heating process.  相似文献   

3.
MgH2-based nanocomposites were synthesized by high-energy reactive ball milling (RBM) of Mg powder with 0.5–5 mol% of various catalytic additives (nano-Ti, nano-TiO2, and Ti4Fe2Ox suboxide powders) in hydrogen. The additives were shown to facilitate hydrogenation of magnesium during RBM and substantially improve its hydrogen absorption-desorption kinetics. X-ray diffraction analysis showed the formation of nanocrystalline MgH2 and hydrogenation of nano-Ti and Ti4Fe2Ox. The possible reduction of TiO2 during RBM in hydrogen was not observed, which is in agreement with lower hydrogenation capacity of the corresponding composite, 5.7 wt% for Mg + 5 mol% nano-TiO2 compared to 6.5 wt% for Mg + 5 mol% nano-Ti. Hydrogen desorption from the as-prepared composites was studied by Thermal Desorption Spectroscopy (TDS) in vacuum. A significant lowering of the hydrogen desorption temperature of MgH2 by 30–90 °C in the presence of the additives is associated with lowering activation energy from 146 kJ/mol for nanosized MgH2 down to 74 and 67 kJ/mol for MgH2 modified with nano-TiO2 and Ti4Fe2O0.3 additives, respectively. After hydrogen desorption at 300–350 °C, these materials are able to absorb hydrogen even at room temperature. It is shown that nano-structuring and addition of Ti-based catalysts do not decrease thermodynamic stability of MgH2. The thermodynamic parameters, obtained from hydrogen desorption isotherms for the Mg–Ti4Fe2O0.3 nanocomposite, ΔHdes = 76 kJ/mol H2 and ΔSdes = 138 J/K·mol H2, correspond to the reported literature values for pure polycrystalline MgH2. Hydrogen absorption-desorption characteristics of the composites with nano-Ti remain stable during at least 25 cycles, while a gradual decay of the reversible hydrogen capacity occurred in the case of TiO2 and Ti4Fe2Ox additives. Cycling stability of Mg/Ti4Fe2Ox was substantially improved by introduction of 3 wt% graphite into the composite.  相似文献   

4.
Lithium alanate (LiAlH4) is a material that can be potentially used for solid-state hydrogen storage due to its high hydrogen content (10.5 wt%). Nevertheless, a high desorption temperature, slow desorption kinetic, and irreversibility have restricted the application of LiAlH4 as a solid-state hydrogen storage material. Hence, to lower the decomposition temperature and to boost the dehydrogenation kinetic, in this study, we applied K2NiF6 as an additive to LiAlH4. The addition of K2NiF6 showed an excellent improvement of the LiAlH4 dehydrogenation properties. After adding 10 wt% K2NiF6, the initial decomposition temperature of LiAlH4 within the first two dehydrogenation steps was lowered to 90 °C and 156 °C, respectively, that is 50 °C and 27 °C lower than that of the аs-milled LiAlH4. In terms of dehydrogenation kinetics, the dehydrogenation rate of K2NiF6-doped LiAlH4 sample was significantly higher as compared to аs-milled LiAlH4. The K2NiF6-doped LiAlH4 sample can release 3.07 wt% hydrogen within 90 min, while the milled LiAlH4 merely release 0.19 wt% hydrogen during the same period. According to the Arrhenius plot, the apparent activation energies for the desorption process of K2NiF6-doped LiAlH4 are 75.0 kJ/mol for the first stage and 88.0 kJ/mol for the second stage. These activation energies are lower compared to the undoped LiAlH4. The morphology study showed that the LiAlH4 particles become smaller and less agglomerated when K2NiF6 is added. The in situ formation of new phases of AlNi and LiF during the dehydrogenation process, as well as a reduction in particle size, is believed to be essential contributors in improving the LiAlH4 dehydrogenation characteristics.  相似文献   

5.
The hydrogen storage properties of LiAlH4 doped efficient TiN catalyst were systematically investigated. We observe that TiN catalyst enhances the dehydrogenation kinetics and decreases the dehydrogenation temperature of LiAlH4. The dehydrogenation behaviors of 2%TiN–LiAlH4 are investigated using temperature programmed desorption (TPD), differential scanning calorimetry (DSC) and fourier transform infrared spectroscopy (FTIR). Interestingly, the onset hydrogen desorption temperature of 2%TiN–LiAlH4 sample gets lowered from 151.0 °C to 90.0 °C with a faster kinetics, and the dehydrogenation rate reached a maximum value at 137.2 °C. By adding a small amount of as-prepared TiN, approximately 7.1 wt% of hydrogen can be released from the LiAlH4 at 130 °C. Interestingly, the result of the FTIR indicates that the 2%TiN–LiAlH4 maybe restore hydrogen under 5.5 MPa hydrogen. Moreover, 2%TiN–LiAlH4 displayed a substantially reduced activation energy for LiAlH4 dehydrogenation.  相似文献   

6.
Lithium aluminum hydride (LiAlH4) is considered as an attractive candidate for hydrogen storage owing to its favorable thermodynamics and high hydrogen storage capacity. However, its reaction kinetics and thermodynamics have to be improved for the practical application. In our present work, we have systematically investigated the effect of NiCo2O4 (NCO) additive on the dehydrogenation properties and microstructure refinement in LiAlH4. The dehydrogenation kinetics of LiAlH4 can be significantly increased with the increase of NiCo2O4 content and dehydrogenation temperature. The 2 mol% NiCo2O4-doped LiAlH4 (2% NCO–LiAlH4) exhibits the superior dehydrogenation performances, which releases 4.95 wt% H2 at 130 °C and 6.47 wt% H2 at 150 °C within 150 min. In contrast, the undoped LiAlH4 sample just releases <1 wt% H2 after 150 min. About 3.7 wt.% of hydrogen can be released from 2% NCO–LiAlH4 at 90 °C, where total 7.10 wt% of hydrogen is released at 150 °C. Moreover, 2% NCO–LiAlH4 displayed remarkably reduced activation energy for the dehydrogenation of LiAlH4.  相似文献   

7.
LiAlH4 is an ideal hydrogen storage material with a theoretical hydrogen storage capacity of 10.6 wt%. In order to reduce the hydrogen release temperature and increase the hydrogen release amount of LiAlH4, multilayer graphene oxide and nickel (FGO-Ni) composite catalyst were prepared by physical ball milling and doped into LiAlH4. The effect of FGO-Ni composite catalyst on the dehydrogenation performance of LiAlH4 was studied by pressure-composition-temperature apparatus, scanning electron microscope (SEM) and X-ray diffractometer. The results show that, compared with pure LiAlH4, the hydrogen release time of LiAlH4 doped with 9 wt%FGO-3wt%Ni is obviously shortened about 90min at 150 °C and the hydrogen release amount of LiAlH4 doped with 9 wt%FGO-3wt%Ni also increased 1.8 wt%. Importantly, the dehydrogenation amount of LiAlH4 (9 wt%FGO)-3wt% could reach 4 wt% at 135 °C which was 4 times higher than that of the pure LiAlH4. At the same temperature, the hydrogen release of pure LiAlH4 was only 0.84 wt%. In contrast, doping FGO-Ni composite catalyst reduces the hydrogen release temperature of LiAlH4 and weakens the hydrogen release barrier. Forthermore, SEM results showed that doping FGO-Ni reduced the agglomeration between LiAlH4 particles and increased the specific surface area of the sample, which improving the hydrogen release properties of LiAlH4.  相似文献   

8.
The effects of TiO2 nanopowder addition on the dehydrogenation behaviour of LiAlH4 have been studied. The 5 wt.% TiO2-added LiAlH4 sample showed a significant improvement in dehydrogenation rate compared to that of undoped LiAlH4, with the dehydrogenation temperature reduced from 150 °C to 60 °C. Kinetic desorption results show that the added LiAlH4 released about 5.2 wt% hydrogen within 30 min at 100 °C, while the as-received LiAlH4 just released below 0.2 wt.% hydrogen within same time at 120 °C. From the Arrhenius plot of the hydrogen desorption kinetics, the apparent activation energy is 114 kJ/mol for pure LiAlH4 and 49 kJ/mol for the 5 wt.% TiO2 added LiAlH4, indicating that TiO2 nanopowder adding significantly decreased the activation energy for hydrogen desorption of LiAlH4. X-ray diffraction and Fourier transform infrared analysis show that there is no phase change in the cell volume or on the Al-H bonds of the LiAlH4 due to admixture of TiO2 after milling. X-ray photoelectron spectroscopy results show no changes in the Ti 2p spectra for TiO2 after milling and after dehydrogenation. The improved dehydrogenation behaviour of LiAlH4 in the presence of TiO2 is believed to be due to the high defect density introduced at the surfaces of the TiO2 particles during the milling process.  相似文献   

9.
The mutual destabilization of LiAlH4 and MgH2 in the reactive hydride composite LiAlH4-MgH2 is attributed to the formation of intermediate compounds, including Li-Mg and Mg-Al alloys, upon dehydrogenation. TiF3 was doped into the composite for promoting this interaction and thus enhancing the hydrogen sorption properties. Experimental analysis on the LiAlH4-MgH2-TiF3 composite was performed via temperature-programmed desorption (TPD), differential scanning calorimetry (DSC), isothermal sorption, pressure-composition isotherms (PCI), and powder X-ray diffraction (XRD). For LiAlH4-MgH2-TiF3 composite (mole ratio 1:1:0.05), the dehydrogenation temperature range starts from about 60 °C, which is 100 °C lower than for LiAlH4-MgH2. At 300 °C, the LiAlH4-MgH2-TiF3 composite can desorb 2.48 wt% hydrogen in 10 min during its second stage dehydrogenation, corresponding to the decomposition of MgH2. In contrast, 20 min was required for the LiAlH4-MgH2 sample to release so much hydrogen capacity under the same conditions. The hydrogen absorption properties of the LiAlH4-MgH2-TiF3 composite were also improved significantly as compared to the LiAlH4-MgH2 composite. A hydrogen absorption capacity of 2.68 wt% under 300 °C and 20 atm H2 pressure was reached after 5 min in the LiAlH4-MgH2-TiF3 composite, which is larger than that of LiAlH4-MgH2 (1.75 wt%). XRD results show that the MgH2 and LiH were reformed after rehydrogenation.  相似文献   

10.
A LiAlH4/single walled carbon nanotube (SWCNT) composite system was prepared by mechanical milling and its hydrogen storage properties investigated. The SWCNT - metallic particle addition resulted in both a decreased decomposition temperature and enhanced desorption kinetics compared to pure LiAlH4. The decomposition temperature of the 5 wt.% SWCNT-added LiAlH4 sample was reduced to 80 °C and 130 °C for the first and second stage, respectively, compared with 150 °C and 180 °C for as-received LiAlH4. In terms of the desorption kinetics, the 5 wt.% SWCNT-added LiAlH4 sample released about 4.0 wt.% hydrogen at 90 °C after 40 min dehydrogenation, while the as-milled LiAlH4 sample released less than 0.3 wt.% hydrogen for the same temperature and time. Differential scanning calorimetry measurements indicate that enthalpies of decomposition in LiAlH4 decrease with added SWCNTs. The apparent activation energy for hydrogen desorption was decreased from 116 kJ/mol for as-received LiAlH4 to 61 kJ/mol by the addition of 5 wt.% SWCNTs. It is believed that the significant improvement in dehydrogenation behaviour of SWCNT-added LiAlH4 is due to the combined influence of the SWCNT structure itself and the catalytic role of the metallic particles contained in the SWCNTs. In addition, the different effects of the SWCNTs and the metallic catalysts contained in the SWCNTs were also investigated, and the possible mechanism is discussed.  相似文献   

11.
In this study, the hydrogenation performance of NaBH4 was modified by the addition of 10 wt% MgFe2O4 as the catalyst. The NaBH4 + 10 wt% of MgFe2O4 sample was prepared by a ball milling technique. The onset decomposition temperature of MgFe2O4-doped NaBH4 was decreased to 323 °C and 483 °C for the first and second stage of dehydrogenation as compared to the milled NaBH4 (497 °C). The desorption kinetics study showed that the addition of MgFe2O4 caused the sample to had faster hydrogen desorption with a capacity of 6.2 wt% within 60 min while the milled NaBH4 had only released 5.3 wt% of hydrogen in the same period of time. For the isothermal absorption kinetics, the total amount of hydrogen absorbed by the milled NaBH4 was 3.7 wt% while the NaBH4 + 10 wt% MgFe2O4 sample showed better absorption characteristic with a total amount of 4.5 wt% of hydrogen within 60 min. The calculated desorption activation energy from the Kissinger plot of NaBH4 + 10 wt% MgFe2O4 sample was 187 kJ/mol which reduced by 28 kJ/mol than the milled NaBH4 (215 kJ/mol). The in-situ formation of MgB6 and Fe3O4 after the dehydrogenation process indicates that these new species were responsible for the improved hydrogenation performances of NaBH4.  相似文献   

12.
The hydrogen desorption properties of MgH2–LiAlH4 composites obtained by mechanical milling for different milling times have been investigated by Thermal Desorption Spectroscopy (TDS) and correlated to the sample microstructure and morphology analysed by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The MgH2–LiAlH4 composites show improved hydrogen desorption properties in comparison with both as-received and ball-milled MgH2. Mixing of MgH2 with small amount of LiAlH4 (5 wt.%) using short mechanical milling (15 min) shifts, in fact, the hydrogen desorption peak to lower temperature than those observed with both as-received and milled MgH2 samples. Longer mixing times of the MgH2–LiAlH4 composites (30 and 60 min) reduce the catalytic activity of the LiAlH4 additive as revealed by the shift of the hydrogen desorption peak to higher temperatures.  相似文献   

13.
The addition of a catalyst and ball milling process was found to be one of the efficient method to reduce the decomposition temperature and improve the desorption kinetics of lithium aluminium hydride (LiAlH4). In this paper, a transition metal oxide, LaFeO3 was used as a catalyst. Decomposition temperature of the 10 wt% of LaFeO3-doped LiAlH4 system was found to be lowered from 143 °C to 103 °C (first step) and from 175 °C to 153 °C (second step), respectively. In isothermal desorption kinetics, the amount of hydrogen released of the doped sample was improved to 3.9 wt% in 2.5 h at 90 °C. Meanwhile, the undoped sample had released less than 1.0 wt% of hydrogen under the same condition. The activation energy of the LaFeO3-doped LiAlH4 sample was measured to be 73 kJ/mol and 90 kJ/mol for the first two dehydrogenation reactions compared to 107 kJ/mol and 119 kJ/mol for the undoped sample. The improvements of desorption properties were the results from the formation of LiFeO2, Fe and La or La-containing phase during the heating process.  相似文献   

14.
Magnesium hydride, as a potential solid state hydrogen carrier has attracted great attention around the world especially in the energy storage domain due to the high hydrogen storage capacity and the good cycling stability. But kinetic and thermodynamic barriers also impede the practical application and development of MgH2. Nanoscale catalysts are deemed to be the most effective measure to overcome the kinetic barrier and lower the temperature required for hydrogen release in MgH2. NbN nanoparticles (~20 nm) with intrinsic Nb3+-N and Nb5+-N were prepared using the molten salt method and used as catalysts in the MgH2 system. It is found that the NbN nanoparticles exhibit a superior catalytic effect on de/rehydrogenation kinetics for the MgH2/Mg system. About 6.0 wt% hydrogen can be liberated for the MgH2+5NbN sample within 5 min at 300 °C, and it takes 12 min to desorb the same amount of hydrogen at 275 °C. Meanwhile, the MgH2+5NbN sample can absorb 6.0 wt% hydrogen within 16 min at 150 °C, and absorb 5.0 wt% hydrogen within 24 min even at 100 °C. Particularly, the catalyzed samples exhibit excellent hydrogen absorption/desorption kinetic stability. After multiple cycles, there is no kinetic attenuation and the hydrogen capacity remains at about 6.0 wt%. It is demonstrated that the NbN nanoparticles with intrinsic multiple valence can be the critical effect in improving the hydrogen storage kinetics of MgH2. The stability of Nb4N3 phase and Nb3+-N and Nb5+-N valence states can ensure a stable catalytic effect in the system.  相似文献   

15.
LiAlH4 modified by different weight ratios of fluorographite (FGi) can be synthesized through mechanical ball-milling and their dehydrogenation behaviors were investigated. LiAlH4 particles distributed on the FGi surface with greatly decreased sizes are achieved, comparing with ball-milled pristine LiAlH4. Greatly reduced dehydrogenation temperatures are discovered in LiAlH4-FGi composites. Among these composites, LiAlH4-40FGi composite exhibits an ultra-fast hydrogen release at very low temperature as 61.2 °C, and 5.7 wt% hydrogen is liberated in seconds. Besides, the released hydrogen is of high purity according to MS test. Furthermore, XRD analysis on the dehydrogenated products proves that FGi changes the dehydrogenation reaction pathway of LiAlH4, through which the dehydrogenation reaction enthalpy change is remarkably reduced, leading to greatly improved hydrogen desorption properties. Such investigations have discovered the potential of solid-state way of producing hydrogen under ambient temperatures.  相似文献   

16.
Thermogravimetric analysis of LiAlH4 chemically mixed with different additives is reported for the application of hydrogen storage. Here, we illustrated the dehydrogenation properties of combined LiAlH4/LiNH2 (2:1) mixture and LiAlH4 wet-doped with different transition metals (Sc, Ti, and V) in their chloride forms. Thermal gravimetric analysis of LiAlH4/LiNH2 system released 7.9 wt.% of hydrogen in three decomposition steps at temperatures between 75 and 280 °C under a heating ramp of 5 °C min−1. The LiAlH4 doped with transition metals showed the decrease of decomposition temperature down to 30–40 °C for both 1st and 2nd dehydrogenation steps as compared to as-received LiAlH4. The catalytic activity in lowering the dehydrogenation temperature of LiAlH4 doped with transition metals increases in the order of pure LiAlH4 < V < Ti < Sc. The X-ray diffraction analysis, field emission scanning electron microscopy, and Fourier transformation infra-red spectroscopy techniques were carried out in support of the thermogravimetric results.  相似文献   

17.
Lithium alanate (LiAlH4) is considered as a promising material for storing hydrogen (H2) in solid-state form for onboard applications due to its advantage of high gravimetric H2 capacity. LiAlH4 could release H2 ~7.9 wt.% when heated up to ~250 °C. Nevertheless, the high desorption temperature, sluggish desorption kinetics, and irreversibility hamper the application of LiAlH4 for solid-state H2 storage materials. Therefore, in this study, we have used aluminum titanate (Al2TiO5) as an additive to diminish the desorption temperature and enhance the desorption kinetics of LiAlH4. The addition of a small amount of Al2TiO5 (5 wt.%) into LiAlH4 significantly decreased the decomposition temperature and enhanced the desorption kinetics, in which Al2TiO5-doped LiAlH4 started to release H2 at ~90 °C and was able to desorb H2 as much as ~3.5 wt.% at 90 °C within 1 h. Without the catalyst, pure LiAlH4 starts to release H2 at ~145 °C and only desorbs H2 as low as 0.3 wt.% at 90 °C within 1 h. The activation energies for H2 release in the two-step desorption process of LiAlH4 were reduced after catalysis with Al2TiO5. The activation energies of as-milled LiAlH4 were 80 kJ/mol and 91 kJ/mol, respectively, as calculated by the Arrhenius plot. The activation energies were lowered to 68 kJ/mol and 79 kJ/mol after milling with Al2TiO5. The scanning electron microscopy images revealed that the LiAlH4 particles became smaller and less agglomerated when Al2TiO5 was added. It is believed that the in-situ formation of active species during the desorption process and reduction in particles size play a vital role in improving the dehydrogenation properties of the Al2TiO5-doped LiAlH4 system.  相似文献   

18.
The co-effects of lanthanide oxide Tm2O3 and porous silica on the hydrogen storage properties of sodium alanate are investigated. NaAlH4-Tm2O3 (10 wt%) and NaAlH4-Tm2O3 (10 wt%)-porous SiO2 (10 wt%) are prepared by the ball milling method, and their hydrogen desorption/re-absorption capacities are compared. Dehydrogenation process was performed at 150 °C under vacuum and rehydrogenation was performed at 150 °C for 4 h under ∼9 MPa in highly pure hydrogen. The results show that Tm2O3 has a catalytic effect on the hydrogen desorption and re-absorption of NaAlH4. The hydrogen desorption capacity of Tm2O3 single-doped NaAlH4 is 4.6 wt%, higher than that of undoped NaAlH4 (4.3 wt%). During the dehydrogenation process, NaAlH4 is completely decomposed and no intermediate product Na3AlH6 is detected. The addition of porous silica improves the dehydrogenation performance of NaAlH4. Tm2O3 and porous silica co-doped NaAlH4 could release a maximum hydrogen amount of 4.7 wt%, higher than that of undoped NaAlH4 and Tm2O3 single-doped NaAlH4. Moreover, porous silica improves the reversibility of hydrogen storage in NaAlH4.  相似文献   

19.
We investigated the effects of NbF5 addition by ball milling on the hydrogen storage properties of LiAlH4. Pressure-composition-temperature (PCT) experiments showed that addition of 0.5 and 1 mol% NbF5 in LiAlH4 improves the onset desorption temperature and results in little decrease in hydrogen capacity, with approximately 7.0 wt% released by 188 °C. Isothermal dehydriding kinetics measurements indicated that the NbF5-doped sample shows an average dehydrogenation rate 5–6 times faster than that of the as-received LiAlH4 sample. In the x-ray diffraction results, there are distinct peaks of Al and LiH that appear after desorption. There is no peak of NbF5 before or after desorption. Desorption kinetics measurements indicated that the activation energy, EA, for LiAlH4 + 1 mol% NbF5 is about 67 kJ/mol for first reaction stage and about 77 kJ/mol for second reaction stage. The desorption process was further characterised by differential scanning calorimetry, and the possible mechanism of the effects of NbF5 addition is discussed.  相似文献   

20.
Transition metal halides are mostly used as dopants to improve the hydrogen storage properties of LiAlH4, but they will cause hydrogen capacity loss because of their relatively high molecular weights and reactions with LiAlH4. To overcome these drawbacks, active nano-sized TiH2 (TiH2nano) prepared by reactive ball milling is used to dope LiAlH4. It shows superior catalytic effect on the dehydrogenation of LiAlH4 compared to commercial TiH2. TiH2nano-doped LiAlH4 starts to release hydrogen at 75 °C, which is 80 °C lower than the onset dehydrogenation temperature of commercial LiAlH4. About 6.3 wt.% H2 can be released isothermally at 100 °C (800 min) or at 120 °C (150 min). The apparent activation energies of the first two dehydrogenation reactions of LiAlH4 are reduced by about 20 and 24 kJ mol−1, respectively. Meanwhile, the regeneration of LiAlH4 is realized through extracting the solvent from LiAlH4·4THF, which is obtained by ball milling the dehydrogenated products of TiH2nano-doped LiAlH4 in the presence of THF and 5 MPa H2. This suggests that TiH2 is also an effective catalyst for the formation of LiAlH4·4THF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号