首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
<正>2015年4月10日,由北京化工大学承担的北京市科委新材料专项课题"M40J高模高强碳纤维国产化制备技术研发"通过专家验收。M40J高模高强碳纤维是支撑航天技术发展的重要结构材料。该课题突破了国产M40J级高模高强碳纤维石墨微晶叠层厚度的调控、原丝牵伸匹配和预氧化环状结构含量控制等关键技术,形成了原丝和预氧化碳化石墨化的完整制备工艺,能满足卫星结构用碳  相似文献   

2.
<正>近日,由北京化工大学承担的北京市科委新材料专项课题"M40J高模高强炭纤维国产化制备技术研发"通过专家验收。M40J高模高强炭纤维是支撑航天技术发展的重要结构材料。该课题突破了国产M40J级高模高强炭纤维石墨微晶叠层厚度的调控、原丝牵伸匹配和预氧化环状结构含量控制等关键技术,形成了原丝和预氧化炭化石墨化的完整制备工艺,能满足卫星结构用炭纤维的基础指标要求。在此基础上,课题组形成了百千克级/年国产M40J级炭纤维的小批  相似文献   

3.
<正>"M40J高模高强碳纤维"国产化技术取得重大突破近日,由北京化工大学承担的北京市科委新材料专项课题"M40J高模高强碳纤维国产化制备技术研发"顺利通过专家验收。碳纤维是国防工业武器装备和国民经济的高端装备、重大基础工程、交通运输、新能源等领域的关键原材料之一,M40J高模高强碳纤维是支撑航天技术发展的重要结构材  相似文献   

4.
<正>近期,由北京化工大学承担的北京市科委新材料专项课题"M40J级高模高强碳纤维国产化制备技术研发"顺利通过专家验收。碳纤维是国防工业武器装备和国民经济的高端装备,以及重大基础工程、交通运输、新能源等领域的关键原材料之一,M40J级高模高强碳纤维是支撑航天技术发展的重要结构材料。该课题突破了国产M40J级高模高强碳纤维石墨微晶叠层厚度的调控、原  相似文献   

5.
近日,由北京化工大学承担的北京市科委新材料专项课题"M40J高模高强碳纤维国产化制备技术研发"通过专家验收.  相似文献   

6.
正北京化工大学:国产M55J级高强高模碳纤维制备取得突破由北京化工大学国家碳纤维工程技术研究中心联合威海拓展纤维有限公司、航天材料及工艺研究所和北京卫星制造厂有限公司承接的科技部863课题"聚丙烯腈碳纤维石墨化关键技术研究"经过三年的协同攻关,攻克纤维制备关键技术、纤维性能表征技术、纤维应用技术和碳纤维高温石墨化设备设计制备技术后,完成了课题任务书要求的全部内容,碳纤维及其复合材料性能指标与进口M55J碳纤维相当。2018年5月8日,科技部高技术中心组织专家组在北京化工大学对课题进行技术验收,专家组认为该课题"自主研发并  相似文献   

7.
正2018年5月21日,科技部863课题"聚丙烯腈碳纤维石墨化关键技术研究"通过技术验收。该课题的完成标志着国产M55J级高强高模碳纤维材料实现了从工艺到装备的完全国产化制备。由北京化工大学国家碳纤维工程技术研究中心联合威海拓展纤维有限公司、航天材料及工艺研究所和北京卫星制造厂有限公司承接的"聚丙烯腈碳纤维石墨化关键技术研究"课题经过三年的协同攻关,攻克了纤维制备关键技术、纤维性能表征技术、纤维应用  相似文献   

8.
<正> 聚丙烯腈纤维的预氧化过程是制备高强高模量碳纤维的重要环节,预氧化过程的研究对改进制备碳纤维的工艺,提高碳纤维的性能以及纺制新型原丝等等都有密切的关系,因此在这方面仍然进行着大量工作。近年来为了缩短预氧化时间,采用提高预氧化温度的措施,这样,聚丙烯腈纤维在某些预氧化条件下会形成皮芯二重结构,我所制备高强Ⅰ型碳纤维的预氧化纤维就是这样  相似文献   

9.
正近日,由北京化工大学等单位承担的863计划课题"聚丙烯腈碳纤维石墨化关键技术研究(2015AA03A202)"通过技术验收。通过该课题的实施,突破了我国航天用QM4055级高强高模碳纤维制备关键技术,满足热熔预浸、热熔缠绕  相似文献   

10.
<正>2018年3月20日,中国科学院宁波材料技术与工程研究所制备出拉伸强度5.24 GPa、拉伸模量593 GPa的高强高模碳纤维,实现了国产高强高模碳纤维M60J关键制备技术的突破。2016年1月,宁波材料所在国内率先实现国产M55J制备技术重大突破,同年9月进行了制备技术验证,并获得拉伸强度4.15 GPa、拉伸模量585 GPa的高强高模碳扦维。后续研究进一步实现了国产M55J高强高模碳纤维连续稳定生产,纤维主体性能批间批内离散系数<5%。  相似文献   

11.
正近日,宁波材料所在国产高强高模碳纤维关键制备技术方面取得重要进展,制备得到拉伸强度5.24 GPa、拉伸模量593 GPa的高强高模碳纤维,实现国产M60J关键制备技术的突破。高强高模碳纤维具有拉伸模量高、热膨胀系数小、  相似文献   

12.
行业资讯     
<正>M40J高性能碳纤维实现中国造7月18日,从中国航天科工集团公司二院二部获悉,我国近日建成了百吨级M40J高模高强碳纤维生产线,意味着高性能碳纤维国产化时代正式到来。M40J高模高强碳纤维复合材料制品具有轻量化、高比强度、高比刚度等特点,是研制航天复杂型号产品不可或缺的关键材料。在《国务院关于印发〈中国制造2025〉的通知》中提出的高档数控机床和机器人、海洋工程等10个重点发展领域  相似文献   

13.
<正>2017年7月,从中国航天科工集团公司二院二部获悉,我国建成了百吨级M40J高模高强碳纤维生产线,意味着我国高性能碳纤维国产化时代正式到来。M40J高模高强碳纤维复合材料制品具有轻量化、高比强度、高比刚度等特点,是研制航天复杂型号产品不可或缺的关键材料。在《国务院关于印发〈中国制造2025〉的通知》中提出的高档数控机床和机器人、海洋工程等10  相似文献   

14.
利用DSC/TG、FT-IR、XRD、元素分析、SEM、TEM和HRTEM系统研究了聚丙烯腈预氧化纤维碳化中的结构演变与碳纤维微观结构。结果表明,中温碳化时,未环化的—C≡N基团继续反应。高温碳化进一步脱H、脱N形成C六元环结构。T-700碳纤维的002衍射峰强度明显高于自制碳纤维,层面间距d002小、石墨网堆叠厚度Lc大、结晶度高。碳纤维呈皮芯结构,表皮由片层堆叠而成,结构致密,含大量纳米级微晶的石墨层结构沿纤维轴取向好,而芯部结构疏松。碳纤维皮芯结构的非均质性由原丝和预氧化纤维的结构演变而来。碳纤维分子结构中存在条带结构和球形结构。条带结构的碳层与原丝分子链条带结构状态十分相似。球形结构的碳网面围绕球心排列,与预氧化纤维的球形结构类似,表明原丝至碳纤维的结构转化过程中纤维分子链结构的变化有密切相关性。  相似文献   

15.
主要介绍了国内外聚丙烯腈基和沥青基高模量碳纤维的研究现状及发展趋势。⑴高模量碳纤维的发展方向:1980年代,两大高模量碳纤维都朝着高强高模方向发展,以满足飞机主承力结构件高强高模并重的需要,因而促使高模量碳纤维的性能从单一高模化向高强高模化方向迈进,如东丽公司的M50J和M60J的抗拉伸强度(σ)分别为4.12 GPa和3.92 GPa,抗拉伸模量(E)分别为475 GPa和588 GPa,与M50(σ:2.45 GPa,E:490 GPa)相比均大幅度提高;1990年代率先研制出XN-70(σ:3.3 GPa,E:690 GPa)和FT-700(σ:3.3 GPa,E:700 GPa)沥青基高强高模碳纤维产品不久,美国AMOCO公司也生产出Thorne K-1000(σ:3.1 GPa,E:956 GPa)商品,满足了工业界的需求。⑵原丝的品质是提升高强高模碳纤维性能的关键:人们特别关注聚合物单体、溶剂、环境等的净化,以及聚合纺丝工艺参数的选择和调整,目的是如何能生产出低灰份杂质,细直径,高碳收率,高取向度和结晶度,毛丝少,柔韧性好,均匀稳定的优质原纤维。优质原纤维是制备高强高模的物质基础。⑶热处理制备工序、设备选型及工艺参数的调控也是提高高强高模碳纤维性能不可或缺的条件:人们在热处理过程用DSC-TG(热分析仪)、EA(元素分析仪)、FE-SEM(场发射扫描电镜)、HRTEM(高分辨透射电镜)、XES(X-射线能谱仪)、XRD(X-射线衍射仪)、Raman(拉曼光谱)、NMR(核磁共振仪)、STM(原子力显微镜)和AAS(原子吸收光谱)等先进的测试分析方法以及万能材料试验机等,研究各工序的工艺参数对产品性能和结构的影响,并详细的用图表阐述之。前人研究的成果加速了世界高强高模碳纤维性能的提升。进而提出了提高我国高强高模碳纤维的关键技术(例如研制非硅系新油剂,加强各工序的净化度和设备加工精度,强化工艺参数调控精度和加强灵活可变性,分析测试的准确度和测试方法的统一性等)。同时简介了高模量碳纤维的应用领域和前景。  相似文献   

16.
主要介绍了国内外聚丙烯腈基和沥青基高模量碳纤维的研究现状及发展趋势。⑴高模量碳纤维的发展方向:1980年代,两大高模量碳纤维都朝着高强高模方向发展,以满足飞机主承力结构件高强高模并重的需要,因而促使高模量碳纤维的性能从单一高模化向高强高模化方向迈进,如东丽公司的M50J和M60J的抗拉伸强度(σ)分别为4.12 GPa和3.92 GPa,抗拉伸模量(E)分别为475 GPa和588 GPa,与M50(σ:2.45 GPa,E:490 GPa)相比均大幅度提高;1990年代率先研制出XN-70(σ:3.3 GPa,E:690 GPa)和FT-700(σ:3.3 GPa,E:700 GPa)沥青基高强高模碳纤维产品不久,美国AMOCO公司也生产出Thorne K-1000(σ:3.1 GPa,E:956 GPa)商品,满足了工业界的需求。⑵原丝的品质是提升高强高模碳纤维性能的关键:人们特别关注聚合物单体、溶剂、环境等的净化,以及聚合纺丝工艺参数的选择和调整,目的是如何能生产出低灰份杂质,细直径,高碳收率,高取向度和结晶度,毛丝少,柔韧性好,均匀稳定的优质原纤维。优质原纤维是制备高强高模的物质基础。⑶热处理制备工序、设备选型及工艺参数的调控也是提高高强高模碳纤维性能不可或缺的条件:人们在热处理过程用DSC-TG(热分析仪)、EA(元素分析仪)、FE-SEM(场发射扫描电镜)、HRTEM(高分辨透射电镜)、XES(X-射线能谱仪)、XRD(X-射线衍射仪)、Raman(拉曼光谱)、NMR(核磁共振仪)、STM(原子力显微镜)和AAS(原子吸收光谱)等先进的测试分析方法以及万能材料试验机等,研究各工序的工艺参数对产品性能和结构的影响,并详细的用图表阐述之。前人研究的成果加速了世界高强高模碳纤维性能的提升。进而提出了提高我国高强高模碳纤维的关键技术(例如研制非硅系新油剂,加强各工序的净化度和设备加工精度,强化工艺参数调控精度和加强灵活可变性,分析测试的准确度和测试方法的统一性等)。同时简介了高模量碳纤维的应用领域和前景。  相似文献   

17.
以实验室自制T800级聚丙烯腈(PAN)基高强中模碳纤维为原料,经连续石墨化处理得到M50J级、M55J级高模量碳纤维,以X射线衍射(XRD)、Raman光谱为表征手段研究了高强碳纤维向高模量碳纤维转变过程中石墨微晶、取向、微孔含量、石墨化度等石墨特征结构的演变规律,并开展了PAN基碳纤维石墨特征结构与力学性能的关联性研究。研究结果表明:在高强碳纤维向高模量碳纤维转变过程中,随着石墨微晶层间距d 002的下降以及石墨微晶堆砌厚度L c的增加,碳纤维的拉伸模量逐渐提升;石墨微晶层间距和微晶取向是影响碳纤维拉伸强度的两个主要因素,石墨微晶层间距d 002值增加、石墨微晶取向越高,纤维拉伸强度也越高;在高模量碳纤维的成型过程中,纤维内部微孔含量随着石墨化程度的提高而降低;经过高温石墨化处理后,碳纤维的拉伸强度会随着Raman光谱中无序结构D峰和石墨特征结构G峰积分强度比值I D /I G的下降而下降。  相似文献   

18.
研究了国产高强中模碳纤维T800、高模碳纤维M50J及M55J的力学性能及其增强树脂基复合材料的界面结合强度(ILSS),并与日本东丽公司同级别碳纤维进行对比。结果表明:国产M55J碳纤维的拉伸模量为568 GPa,拉伸强度为4.50 GPa,日本东丽公司M55J的拉伸模量为561 GPa,拉伸强度为4.10 GPa,国产高模碳纤维表面石墨化程度高于日本东丽碳纤维,表面呈现更高惰性,其增强树脂基复合材料的ILSS略低于日本东丽碳纤维复合材料;将高强中模碳纤维与高模碳纤维混合后对树脂基体进行增强,混合碳纤维中随着高强中模碳纤维含量提高,其复合材料的ILSS提高幅度也随之增加。  相似文献   

19.
高模量碳纤维的现状及发展(1)   总被引:2,自引:0,他引:2  
主要介绍了国内外聚丙烯腈基和沥青基高模量碳纤维的研究现状及发展趋势。⑴高模量碳纤维的发展方向:1980年代,两大高模量碳纤维都朝着高强高模方向发展,以满足飞机主承力结构件高强高模并重的需要,因而促使高模量碳纤维的性能从单一高模化向高强高模化方向迈进,如东丽公司的M50J和M60J的抗拉伸强度(σ)分别为4.12 GPa和3.92 GPa,抗拉伸模量(E)分别为475 GPa和588 GPa,与M50(σ:2.45 GPa,E:490 GPa)相比均大幅度提高;1990年代率先研制出XN-70(σ:3.3 GPa,E:690 GPa)和FT-700(σ:3.3 GPa,E:700 GPa)沥青基高强高模碳纤维产品不久,美国AMOCO公司也生产出Thorne K-1000(σ:3.1 GPa,E:956 GPa)商品,满足了工业界的需求。⑵原丝的品质是提升高强高模碳纤维性能的关键:人们特别关注聚合物单体、溶剂、环境等的净化,以及聚合纺丝工艺参数的选择和调整,目的是如何能生产出低灰份杂质,细直径,高碳收率,高取向度和结晶度,毛丝少,柔韧性好,均匀稳定的优质原纤维。优质原纤维是制备高强高模的物质基础。⑶热处理制备工序、设备选型及工艺参数的调控也是提高高强高模碳纤维性能不可或缺的条件:人们在热处理过程用DSC-TG(热分析仪)、EA(元素分析仪)、FE-SEM(场发射扫描电镜)、HRTEM(高分辨透射电镜)、XES(X-射线能谱仪)、XRD(X-射线衍射仪)、Raman(拉曼光谱)、NMR(核磁共振仪)、STM(原子力显微镜)和AAS(原子吸收光谱)等先进的测试分析方法以及万能材料试验机等,研究各工序的工艺参数对产品性能和结构的影响,并详细的用图表阐述之。前人研究的成果加速了世界高强高模碳纤维性能的提升。进而提出了提高我国高强高模碳纤维的关键技术(例如研制非硅系新油剂,加强各工序的净化度和设备加工精度,强化工艺参数调控精度和加强灵活可变性,分析测试的准确度和测试方法的统一性等)。同时简介了高模量碳纤维的应用领域和前景。  相似文献   

20.
使用高温石墨化炉对实验室自制的高强中模碳纤维进行连续石墨化处理,制备得到了强度4.86 GPa、模量541 GPa的高强高模碳纤维,并详细研究了石墨化处理过程中主要工艺参数对碳纤维结构与性能的影响。研究结果探讨掌握了高温石墨化(2 500℃)处理前后碳纤维微观结构的演变规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号