首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
率先明确探测并提出底板采动导水破坏深度滞后煤壁二次加深的观点,并先后选择晋城、榆林、鄂尔多斯多个煤矿工作面做了验证,利用现场测试条件,在煤壁推过测点后,仍对底板采动破坏规律实施注水试验与底板岩层应变连续性探测。探测结果表明:1)底板岩层首次破坏发生在工作面刚推过测点的应力集中区;2)工作面推过测点15~20 m,即过测点后的第1次周期来压时,测点位置的底板导水破坏深度出现二次滞后加深,破坏加深程度一般在1~2 m;3)工作面推过测点2~4个周期来压后测点位置底板岩层变形状态趋于稳定;4)工作面推过测点后第1次周期来压到第4次周期来压之间(工作面推过测点15~60 m)这段距离为底板滞后突水高风险区域;5)底板注水试验与岩层应变探测试验的探测结果一致性很高。  相似文献   

2.
为研究深部倾斜煤层底板破坏特征及破坏深度,以羊东煤矿8469工作面为研究对象,采用理论分析、数值模拟和现场实测相结合的方法,对煤层采后底板应力分布规律、塑性区发育特征及破坏深度进行了研究。通过数值模拟与理论分析可知:煤层开采后,作用在周围煤岩体上的支承压力产生不同的应力分区。沿煤层走向方向,应力呈对称性变化,形状近似马鞍状,在工作面两端处产生应力集中;沿煤层倾向方向,倾斜剪切力的存在使底板岩体由采动破坏转变成滑移破坏,塑性破坏区和应力变化大致呈勺型分布形态,最大应力集中区出现在工作面下侧。随着工作面向前推进,底板破坏范围相应增大,但推进255m后,破坏深度不再增加。现场实测表明,底板浅部岩层最早受到扰动,且受到的扰动程度最高。扰动范围随最大注水量的减少而增加,在底板下25m范围内的岩层受影响较小。由此可知,该工作面底板破坏深度为25.0~29.2m。  相似文献   

3.
采动条件下厚煤层底板破坏规律动态监测及数值模拟研究   总被引:2,自引:0,他引:2  
以某矿综放工作面的开采实际为背景,采用现场应变测试和数值模拟相互验证的方法,对采动条件下厚煤层底板破坏深度进行综合对比研究。现场实测表明,某矿综放工作面煤层底板岩体破坏深度介于13~16 m之间,采动矿压对底板的影响具有较远距离的"超前"显现和"滞后"延续的特点,(超前、滞后距)表现有由浅及深相应减小的总体特征;数值模拟研究表明,工作面底板下0~16 m为底板破坏影响带,即底板最大破坏深度为16 m,16~36 m岩层受煤层开采影响较小,再往下有接近原岩应力的趋势;综合分析得出该面采动底板变形破坏深度为16 m,研究结果为我国类似条件下煤炭资源安全开采及矿井水害防治提供参考依据。  相似文献   

4.
为了分析带压煤层开采底板岩体破坏规律,选择成庄矿为工程现场,通过对其不同深度主采煤层底板采动破坏情况经行数值模拟,以及对工程现场底板裂隙实际发育深度的注水试验探测,综合研究带压煤层开采底板裂隙演化规律。结果表明:煤层埋深与煤层采厚对底板裂隙的发育影响不大,工作面宽度与底板岩性为主控因素,另外,工程试验对数值模拟结果的验证,证明数值模拟可作为一种研究带压煤层底板裂隙发育深度的可靠手段。  相似文献   

5.
针对某矿煤层埋藏深,受底板承压水威胁严重的问题,确定底板采动破坏的深度是实现对其深部开采的关键和前提。根据该矿1305工作面的水文地质条件、煤层力学性质以及顶底板岩层结构和性质,运用FLAC3D数值模拟方法研究煤矿深部开采过程中应力分布与塑性区分布特征,结合现场实测数据及煤层不同深度的超前段底板超声图像观测规律,得出该工作面采动煤层底板变形破坏的深度约为22 m。  相似文献   

6.
针对某矿煤层埋藏深,受底板承压水威胁严重的问题,确定底板采动破坏的深度是实现对其深部开采的关键和前提。根据该矿1305工作面的水文地质条件、煤层力学性质以及顶底板岩层结构和性质,运用FLAC3 D数值模拟方法研究煤矿深部开采过程中应力分布与塑性区分布特征,结合现场实测数据及煤层不同深度的超前段底板超声图像观测规律,得出该工作面采动煤层底板变形破坏的深度约为22 m。  相似文献   

7.
为了预防工作面底板突水,保证矿井的安全生产,以梁北煤矿11141工作面为工程背景,采用数值模拟研究了带压开采工作面推进距离、埋深、煤层厚度、断层及断层位置等不同条件对底板破坏深度的影响。研究结果表明,工作面推进距离越大底板破坏深度越大,但推进至60m后,底板破坏深度保持不变趋于稳定;埋深越大底板破坏深度越大,400m埋深增加到800m埋深,每增加200m埋深,增大速度由50%降至12.25%,增大速度逐渐减小;煤层厚度越大,底板的破坏范围越大,对底板的破坏深度无影响;存在断层则底板破坏深度越大,底板最大破坏深度增加18.2%,断层位于初次来压影响范围内比位于周期来压影响范围内对底板破坏深度的影响要剧烈。  相似文献   

8.
为研究近距离煤层上层煤开采后采空区积水对下层煤安全开采造成的影响,有必要对上层煤开采底板破坏深度及下层煤导裂带高度进行研究。结合凉水井煤矿现场实际情况,运用工作面底板注水试验方法对该矿4-2煤开采底板扰动深度进行研究。结果表明,底板由于煤层采动地板岩层在应力集中下产生首次破坏,破坏深度在15 m左右,之后底板由于顶板周期来压,底板破坏深度加深至16 m左右,为实际工程中极近距煤层的开采和防水方案确立提供依据。  相似文献   

9.
《煤矿安全》2016,(7):41-43
为了探索采动对构造内岩体的影响,以晋煤集团成庄煤矿为试验现场,通过对比正常煤层与含非导水陷落柱煤层的底板采动破坏情况,综合研究构造的采动裂隙发育规律。结果表明:正常煤层与含构造煤层底板采动破坏深度的理论、模拟与工程探测结果均在19 m和31 m附近,结果吻合且可靠,即非导水陷落柱的采动裂隙发育深度约为正常煤层的1.7倍。  相似文献   

10.
大采深厚煤层底板采动破坏深度   总被引:14,自引:0,他引:14       下载免费PDF全文
针对我国承压水上开采底板突水灾害随开采深度不断增大而逐年增多的趋势,以某矿综放工作面的深部开采实际为背景,根据现场煤层底板钻孔内不同深度传感器应变测试值随工作面的变化规律,确定出煤层底板岩体破坏深度介于18~20 m;以研究区实际地层资料为基础建立工程地质模型,通过反复试算、逐步修正模型边界条件,对煤层底板破坏特征进行分析,弥补了现场实测结果不能反映出煤层回采过程中底板应力场的不足;采用现场应变实测和数值模拟相互结合的方法,确定了大采深厚煤层底板破坏深度为20 m,揭示了矿山压力在采动煤层底板中的传播规律。  相似文献   

11.
为得到离柳矿区柳家庄煤矿8号煤层首采工作面底板破坏发育特征,采用数值模拟及现场实测相结合的方法,研究了80101首采工作面底板破坏裂隙的发育形态及深度、不同工作面宽度条件下的底板破坏深度发育特征;根据压水判别依据,确定了5组底板破坏探测孔裂隙发育深度的实测数据。数值模拟结果表明:未受相邻采场采动应力影响下的首采工作面底板破坏深度发育较小,底板破坏在工作面走向上呈倒马鞍形,即工作面端部两侧底板破坏深度最大,最大破坏带向外侧倾斜为剪切破坏为主;工作面中部底板破坏深度小,以拉张破坏为主;底板破坏深度受工作面宽度影响较大,底板采动破坏深度与工作面宽度呈线性变化。现场实测结果表明,柳家庄煤矿80101首采工作面底板破坏深度为16.32~16.92 m,验证了数值模拟的有效性,同时为离柳矿区下组煤带压开采提供了基础资料。  相似文献   

12.
陈冰 《煤》2014,(5):67-69
为研究浅埋深煤层群下行开采底板卸压规律,通过FLAC和UDEC数值模拟软件模拟分析了上煤层工作面采动过程中底板煤岩体的应力及位移变化规律,得出了底板煤岩体最大卸压深度为40 m;底板裂隙发育呈"O"形圈分布,工作面煤壁处底板煤岩体的纵向裂隙与下层煤体贯通。可为上煤层工作面实施底板瓦斯预抽采,解决开采过程中底板煤层瓦斯渗流至工作面导致的瓦斯超限问题提供理论指导。  相似文献   

13.
采高对煤层底板破坏深度的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
随着埋深增大,原底板破坏深度经验公式对不同采高工作面底板破坏深度的预计误差增大。以赵固二矿为背景,通过有限元数值计算方法对底板破坏规律进行研究、采用矿井对称四极电剖面法对不同采高底板破坏深度进行实测并运用Spass软件对4个底板采动破坏影响因素与底板破坏深度的关系进行多元统计回归分析。研究得出,煤层埋深较大时采高对底板破坏深度的影响明显;随着采高的增大,底板垂直应力减小,围岩竖直位移增大,位移等值线梯度减小,底板破坏深度增大;考虑采高因素的底板破坏深度线性回归公式对煤层开采工作面底板破坏深度的预计准确率高,适用性强。  相似文献   

14.
以新元矿9203工作面实际开采情况为背景,采用应变法现场原位监测煤层底板采动破坏深度,通过现场煤层底板监测钻孔内不同深度的应变传感器采集到的采动中应变变化规律,分析得出工作面底板采动破坏深度在11.5~13.5 m之间,再利用FLAC3D软件进行数值模拟,对模拟结果的应力分布及塑性区范围分析,结合煤层底板实际岩层组合情况,得出底板采动破坏深度约为12.2 m,该值在现场监测结果范围之内,验证了现场监测结果的正确性。  相似文献   

15.
沿煤层倾斜方向底板“三区”破坏特征分析   总被引:1,自引:0,他引:1  
为了研究具有一定倾角煤层底板的采动破坏特征,基于矿山压力理论,建立了考虑煤层倾角的工作面侧向底板受力力学模型,采用摩尔-库仑破坏准则,推导了工作面侧向煤柱下方底板的最大破坏深度表达式。将底板采动破坏带沿煤层倾斜方向划分为3个不同区域,其呈现为一个比工作面宽度还要宽的、下大上小的"勺形"分布形态。利用数值模拟方法研究了倾角对煤层底板破坏深度、破坏形态以及最大破坏深度位置的影响规律。结果表明:1)底板塑性破坏区深度随工作面宽度的增大呈现增大的趋势;随煤层倾角的增大,先增大后减小,在煤层30°倾角时,塑性破坏区深度最大,底板岩体更容易发生剪切滑移破坏;2)工作面底板最大塑性破坏深度位置随煤层倾角的增大逐渐偏离工作面中部向下,且工作面越宽,偏离越远。  相似文献   

16.
在对多个矿区工作面进行现场探测发现工作面推过底板后的第一次顶板周期性垮落过程中,底板裂隙破坏深度会出现滞后加深的现象,为对这种特殊采矿地质现象进行分析,以某矿现场地质条件为依托,采用相似模拟手段,模拟采动动载作用下底板岩层裂隙演化规律。经研究发现:1)采空区底板岩层首次受顶板岩层垮落冲击作用后,底板岩层采动裂隙会出现滞后破坏加深的现象。在之后的2~3次顶板周期性垮落冲击过程中,底板岩层裂隙都有类似规律,但加深效果逐渐减弱;2)相似模拟试验的底板岩层位移与垂直应力监测结果证明了底板岩层经历了采前应力集中、采后膨胀泄压,采动动载冲击,采空区矸石充填平衡4个过程,底板裂隙的萌生、扩展以及再加深主要发生在1~2与2~3的转变过程之间,第4过程对底板裂隙的扩展实际是起到抑制作用的,底板破坏深度最大处一般出现在工作面推过测点后的1~2个周期来压至采空区底板被矸石充填压实之间这段距离,这也解释了为什么采空区滞后突水灾害时有发生;3)软弱底板岩层更易受采动影响,其位移与垂直应力的变化幅度较坚硬底板岩层而言明显偏大,但其底板裂隙发育深度和滞后破坏加深程度比坚硬底板岩层要弱。  相似文献   

17.
张风达 《煤矿安全》2020,51(7):42-47
为分析深部采空区煤层底板滞后破坏特征,运用悬臂梁模型分析裂纹面间锁固段的变形破坏特征,通过试验分析岩样加载至塑性阶段后卸载再加载过程中的体积应变与偏应力的关系,结合煤层底板注水试验实测数据分析深部煤层底板岩体在采空区重新压实过程中的渗透性能变化。研究表明,裂纹面间锁固段变形破坏程度在采动剪切滑移和采动卸荷过程中逐渐增大;处于塑性状态的岩样在轴向应力卸载后再加载至卸载点81 MPa时,体积应变由0.000 56增大至0.001 1;现场实测发现距煤层底板18.19 m处的岩体在工作面推过测点3.6~15.8 m的过程中出现裂纹扩展、变形破坏,在工作面推过测点20.6~30.9 m过程中,底板岩体再次发生变形破坏,说明深部煤层底板在加载至塑性状态后卸荷并重新承载的过程中仍存在变形破坏可能性。  相似文献   

18.
转龙湾煤矿首采工作面煤层埋深160 m左右,基岩厚度60~120 m,属于浅埋薄基岩开采。本文分析了转龙湾煤矿II-3煤层覆岩特征,井下现场探测了首采试验区的采动覆岩破坏导水裂缝带发育高度,采用有限差分数值仿真方法模拟了薄基岩浅埋煤层综放开采条件下的覆岩运移破坏过程。研究表明,采动覆岩塑性破坏区的形态经历了"马鞍形"—"拱(箱)形"的演化发育过程;随着采动空间的增大,采空区两端超前破坏裂隙扩展速度较中部变慢,最大导水裂缝带发育高度位于采空区中部,裂采比为20。  相似文献   

19.
廖志恒 《煤矿安全》2018,(4):185-188
为研究承压水上膏体充填开采底板采动破坏特征,以岱庄煤矿11607工作面的采场条件为工程背景,基于FLAC~(3D)数值仿真软件,建立承压水上膏体充填开采流-固耦合数值模型,对充填工作面回采过程中煤层底板的破坏特征进行了研究分析。研究表明:充填开采采动底板的承压水导升高度不明显,煤层底板破坏深度在工作面推进至12.4 m后趋于平缓,且当工作面推进至100 m时达到底板最大破坏深度仅为6 m,理论计算了充填工作面采动底板的最大破坏深度范围为3.83~5.27 m,采用单孔恒定水压法对11607工作面底板进行现场实测,测得底板最大破坏深度为6.50 m,与理论计算、数值模拟所得结果基本吻合。  相似文献   

20.
以某矿综放工作面开采实际为背景,通过应变法对煤层底板不同深度岩层变形程度随工作面推进的变化进行实测,得出采动矿压对底板的剧烈影响范围具有“超前”显现和“滞后”延续特点,且矿压剧烈影响超前显现距为37 m,矿压剧烈影响滞后显现距为32 m,表现为由浅及深相应减小的总体特征;结合采动底板钻孔窥视镜成像分析,确定出工作面底板采动破坏深度约为12 m;以现场实测结果为基础,采用FLAC3D数值模对煤层底板采动破坏特征进行分析,揭示出煤层开采过程中底板的三维破坏特征。采用现场应变实测、原位钻孔窥视镜观测和数值模拟相互验证的方法,对煤层底板破坏特征进行综合对比研究,弥补了以往研究手段单一的缺点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号