首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 388 毫秒
1.
运行经验表明,应力腐蚀开裂(SCC)是镍基600合金在压水堆核电站一回路高温高压水环境中的主要失效形式。针对镍基600合金SCC影响因素多、机理复杂,现有预测模型应用性不高的问题,利用TPE-XGBoost算法,通过机器学习挖掘应力强度因子、温度、屈服强度、溶解氢含量、裂纹扩展方向、载荷类型、热处理工艺等影响因素与裂纹扩展速率之间的关系,建立反映多维数据关联关系的非参数镍基600合金应力腐蚀裂纹扩展速率预测模型。结果表明,TPE-XGBoost算法可以实现高维度数据集超参数快速优化,且有效避免优化结果陷入局部最优解,使得预测模型具有良好的泛化能力,将应用于压水堆核电站镍基600合金部件反应堆冷却剂条件应力腐蚀裂纹扩展工程预测。  相似文献   

2.
镍基合金作为压水堆一回路安全端焊接接头焊缝的常用材料,由于严苛的服役环境以及焊缝处材料力学性能的不均匀使得镍基合金极易发生应力腐蚀开裂现象,对核电安全运行造成很大影响。为了解材料宏观结构参量变化(包括材料塑性性能以及应力强度因子K)对SCC裂纹扩展速率的变化,本文通过建立镍基合金600不同宏观结构参量下的SCC裂纹扩展有限元模型,分析了镍基合金600不同塑性以及载荷参数变化对裂尖塑性区和拉伸塑性应变的影响,结果表明塑性区尺寸及裂尖拉伸应变受到裂尖应力强度因子、屈服强度及硬化指数的影响,其中裂尖应力强度因子的影响较大,同时与屈服强度成反比,应力强度因子和硬化指数成正比;通过比较不同应力强度因子下计算所得SCC扩展速率结果和高温水环境下SCC扩展速率实验,获得了符合镍基合金600的特征距离r0的取值范围;研究结果能为核电镍基合金600的高温水环境下SCC速率预测提供一定的科学依据。  相似文献   

3.
The kinetics of crack growth under the conditions of stress corrosion cracking of aluminum alloys in electrolytes with different anion composition and pH values from 0 to 13 has been studied. It is shown that for the majority of alloy-electrolyte systems anodic polarization accelerates whereas cathodic polarization decelerates crack growth. For “chromic acid – sodium chloride” electrolyte it is shown that cathodic polarization under the conditions of stress corrosion cracking (SCC) has an ambiguous effect on crack growth. The behaviour of A127-;1 alloy is taken as an illustration of such SCC cracking growth in these electrolytes.  相似文献   

4.
为了解表面划伤导致的不同氧化物形貌对镍基合金应力腐蚀(SCC)行为的影响,模拟了膜致应力下镍基合金划伤裂纹尖端的局部应力应变场。结果表明,楔形力是引发SCC裂纹扩展的主要驱动力。划痕裂纹前端的氧化物越厚,楔形力越大,并会增大SCC裂纹扩展速率。裂尖氧化物的形成导致了压应力、压应变和负的应变速率,并会阻碍半椭圆裂纹尖端上部和下部的SCC裂纹扩展。  相似文献   

5.
裂尖力学状态是影响核电结构材料应力腐蚀开裂(SCC)扩展速率的主要因素之一。为了搞清SCC不同扩展阶段裂尖驱动力的变化及其对SCC扩展速率的影响,本文建立了SCC扩展不同阶段的有限元模型,详细分析了裂纹初始阶段影响裂尖应力状态的工作载荷、残余应力,以及氧化膜形成过程中产生的膜致应力。结果表明,在SCC裂纹初始阶段,裂尖氧化膜形成所产生的“锲入张力”是SCC的主要驱动力;随着裂纹的扩展,工作载荷和残余应力逐渐成为SCC裂纹扩展的主要驱动力。  相似文献   

6.
镍基690合金广泛用于压水堆核电站核岛主设备关键部件及焊缝,高温高压水环境应力腐蚀开裂(SCC)是其潜在的失效机理。由于SCC行为影响因素多达二十余种,因此存在参数化模型预测精度不高的问题。本文通过融合随机森林机器学习算法(Random Forest, RF)与基于领域知识的MRP-386参数化模型,建立了镍基690合金SCC裂纹扩展速率KBRF(Knowledge-Based Random Forest)预测模型,结果表明,领域知识的引入增强了KBRF模型的鲁棒性,准确性较MRP-386参数化模型和RF等机器学习模型显著提高,预测结果与实验值较为接近,将应用于我国压水堆核电站镍基690合金部件及焊缝在反应堆冷却剂中的应力腐蚀裂纹扩展工程预测。  相似文献   

7.
The fatigue crack growth behavior of the newly developed GH4169 nickel-based alloy at a maximum stress of700 MPa and different stress ratios was investigated in the present work employing the specimens with a single micronotch at a frequency of 129 Hz at room temperature. The results demonstrate a typical three-stage process of fatigue crack propagation processing from the microstructurally small crack(MSC) stage to the physically small crack(PSC) stage, and finally to the long crack stage. The crack growth rate in the MSC stage is relatively high, while the crack growth rate in the PSC stage is relatively low. A linear function of crack-tip reversible plastic zone size was proposed to predict the crack growth rate, indicating an adequate prediction solution.  相似文献   

8.
核反应堆关键焊接结构应力腐蚀裂纹失效评估   总被引:2,自引:2,他引:0       下载免费PDF全文
以沸水堆堆芯围板焊接热影响区应力腐蚀开裂为例进行了裂纹扩展评估研究.采用有限元模拟与试验检测数据验证相结合的方法对焊接热影响区焊接残余应力场及应力腐蚀开裂扩展过程进行模拟.通过有限元方法计算了应力腐蚀开裂裂纹尖端应力强度因子,再根据应力腐蚀裂纹扩展试验数据获得裂纹尖端应力强度因子与裂纹扩展速率的关系,最终预测了沸水堆堆芯围板的使用寿命,解决了重大构件基于应力腐蚀开裂失效的安全评估问题.该研究过程为重大构件的腐蚀疲劳裂纹失效的安全使用提供了可借鉴的方法.  相似文献   

9.
LC-4铝合金应力腐蚀裂纹内的电化学行为   总被引:1,自引:0,他引:1  
本文提出了一种测定应力腐蚀裂纹内的电位和 pH 值的方法。这种方法适用于应力腐蚀裂纹内和各种腐蚀缝隙内的电化学测试。设备简单,操作方便而且精确度高。文中列出用该法测定 LC-4铝合金应力腐蚀裂纹尖端处微区的电化学数据,并结合电位 pH 图进行了讨论和分析。作者根据所得结果提出由微电池相互耦合而成的多电极体系等效电路模型,可以较好地解释本文的实验结果。对于 LC-4铝合金,裂纹尖端电位与 pH 值间存在下列关系=-0.750-0.043pH(SCE)而在 Pourbaix 图中则穿过钝化区,并与应力腐蚀敏感性存在对应关系。  相似文献   

10.
《Scripta materialia》2004,50(1):25-30
LCF experiments, in situ tensile tests and small fatigue crack growth rate measurements on different heats of Inconel 718 alloy with widely different grain sizes have been performed. A fatigue life prediction model including a transition in the crack initiation mechanism (particle/Stage I) is identified. This model is essentially based on Tanaka and Mura model [J Appl Mech 48 (1981) 97] for Stage I initiation and Tomkins model [Philos Magazine 18 (1981) 1041] for fatigue crack growth rate.  相似文献   

11.
F.M. Song   《Corrosion Science》2009,51(11):2657-2674
A fundamentally based mathematical model was developed with the goal to predict, as a first step, the crack growth rate (CGR) of high pH stress corrosion cracking (SCC) of buried steel pipelines. Two methods were used to predict CGRs and for both methods the model has included the film rupture and repassivation mechanism. The two methods are distinguished by the expression used to determine the active anodic current density at the crack tip. In the first method, this current density is expressed by the anodic polarization curve with a large peak current density and the prediction tends to yield a larger CGR and a lower pH at the crack tip. By contrast, when the Butler–Volmer equation is used to express the crack tip anodic current density, with a predicted low CGR the chemistry at the tip does not appear to have any significant change due to the high buffer of the solution.The predicted mechanism responsible for the steady-state crack growth is shown to be the balance between the increasing stress intensity factor as the crack grows, which tends to increase the crack tip strain rate and thus the CGR, and the change of the crack tip condition, which, for large CGRs, is the significant shift in the more negative direction of the crack tip potential, and for low CGRs, the increase of ferrous ion concentration, and either tends to decrease CGR.Limitations currently existing in the model and proposal for further development of the model are discussed.  相似文献   

12.
To investigate the initiation behavior of stress corrosion cracking (SCC) for sensitized Type 304 stainless steel in high temperature water, a constant load SCC test method combined with in situ crack observation technique was employed. The in situ crack observation system allowed us to detect small cracks of at least 100 μm. As a result, a fracture time decreased with an increase in an applied stress. The first cracks were observed at most 3 h before the specimen was fractured under all the stress conditions. After that, many cracks were initiated in a short time to fracture. The fracture was caused by coalescence of multiple cracks rather than by growth of some primary cracks. The simulation model for surface crack initiation was newly developed using a Monte Carlo method, which was based on damage mechanics and stress analysis around the existing cracks. The simulation could represent the empirical results of changes in the crack distribution and the cumulative number of cracks during the SCC tests. It was concluded, therefore, that the crack initiation process should be considered in simulating the life prediction of the material in this SCC system.  相似文献   

13.
The fatigue property as well as stress corrosion cracking (SCC) resistance of an Al-Zn-Mg-Cu alloy thick plate in peak-aged and overaged tempers (T7351 and T7651) is systematically investigated by fatigue crack propagation (FCP) test and slow strain rate test (SSRT). Microstructural characterization is examined by transmission electron microscopy and scanning electron microscopy. Results reveal that the T7351 alloy has lower strength but higher electrical conductivity as compared to T7651 alloy. The FCP resistance of T7351 alloy is superior to that of the T7651 alloy due to the coarser precipitates in the highly overaged alloy in which the strain localization is reduced by promoting homogeneous slip. In addition, the SSRT test suggests a higher SCC resistance in T7351 alloy. The enhanced SCC resistance is found to depend on grain boundary precipitate characteristics and crack propagation resistance of the alloys.  相似文献   

14.
以新型1200 MPa级Ti-35421合金(Ti-3Al-5Mo-4Cr-2Zr-1Fe)为研究对象,采用慢应变速率拉伸实验结合原位电化学监测研究了不同应变速率和阴极保护电位对其应力腐蚀开裂行为的影响。结果表明:当应变速率为1.67×10-5mm·s-1时Ti-35421合金在3.5%NaCl溶液中应力腐蚀敏感性最高,其塑性损失和应力腐蚀指数分别为27.27%和0.273;裂纹尖端钝化膜层在应力和腐蚀的共同作用下钝化保护弱于溶解,导致了应力腐蚀加剧;当外加阴极保护电位为-600mV时Ti-35421合金在3.5%NaCl溶液中的应力腐蚀敏感性最低,其最佳阴极保护电位范围为-450~-600 mV,降低了阳极共轭反应,从而使其塑性损失和应力腐蚀指数分别降低到1.01%和0.113。  相似文献   

15.
This work presents an experimental evaluation of yield strength, tensile strength, and impact toughness of 7075 Al alloy. The extended finite element method (XFEM) has been chosen for quasi-static crack growth simulations using Charpy impact energy as the crack growth criterion for both Bulk and ultrafine-grained (UFG) 7075 Al alloy. The 7075 Al alloy is rolled for different thickness reductions (40 and 70%) at cryogenic (liquid nitrogen) temperature, and its mechanical properties are studied by performing the tensile and Charpy impact testing. The microstructural characterization of the alloy was carried out using field emission scanning electron microscopy (FE-SEM). The rolling of the Al alloy at cryogenic temperature suppresses dynamic recovery, and dislocation cells formed during processing, transformed into fully formed ultrafine-grains (600?nm) at 70% thickness reduction. The impact energy used as the crack growth criterion under quasi-static loading condition based on the Griffith energy concept. The elastic-plastic ductile fracture simulations are performed by XFEM using ABAQUS Software (Version 6.9). For crack modeling, two different types of functions are used to model a crack based on partition of unity concept. A discontinuous function is used to model the portion behind the crack tip, whereas crack tip is modeled by near-tip asymptotic functions. This permits the crack is to be represented explicitly without meshing the crack surfaces, thus crack propagation simulations can be carried out without a need of re-meshing. Strain energy release and stress distribution ahead of the crack tip is found for some practical crack problems. The numerical examples indicate a significant improvement in crack growth properties of UFG 7075 Al alloy as compared to its bulk form due to an effective grain refinement.  相似文献   

16.
含有第二相的高强铝合金疲劳模型   总被引:3,自引:0,他引:3  
基于疲劳裂纹尖端的应力和应变以及高强铝合金中不同尺度第二相性态对其延性的影响,建立了高强铝合金中粗大第二相、中间尺度第二相以及细小时效强化相性态与其疲劳裂纹扩展速率之间的多元非线性关系模型。结果表明:对于2024铝合金的疲劳扩展速率,该模型的预测趋势与他人的实验研究结果吻合良好。同时借助于对该模型的理论分析,提出了在确保高强铝合金强度不降低的前提下降低其疲劳裂纹扩展速率的优化方案。  相似文献   

17.
SCC crack growth mechanism of austenitic stainless steel X6 CrNiTi 18 10 in aqueous chloride solution at elevated temperatures The SCC crack growth mechanism of steam generator heat transfer tubes from stainless steel X6 CrNiTi 18 10 under internal stress conditions at elevated temperatures is discussed. Based on crack tip characterization by means of Scanning and Transmission Electron Microscopy and the evidence of hydrogen originated throughout the corrosion process a crack propagation model is presented. The results refer to a microcrack induced gradual crack growth caused by local hydrogen embrittlement. Microcrack growth has been observed due to slip-band decohesion. The crack growth rate is mainly influenced by the stress state near the crack tip and the hydrogen evolution throughout the corrosion process.  相似文献   

18.
The crack tip strain rate (CTSR) and the dissolution/repassivation kinetics are the parameters controlling high pH SCC of pipeline steels because the repeated film rupture is the dominative mechanism. The CTSR is mainly produced by the crack tip advance and cyclic load. Theoretical expressions of the CTSR are given to account on these factors. After the anodic current density determined from a polarization curve measured with a potential scanning velocity 1 V/min and the repassivation kinetic exponent obtained by the strained electrode method are utilized, the crack growth model proposed gives a reasonably good prediction to the crack velocity experimentally observed. A numeric simulation in a 0.5 M carbonate + 0.5 M bicarbonate solution indicates that the effect of mass transfer within crack on the crack growth is negligible when the crack velocity is below 10−9 m/s. Various factors affecting the SCC are discussed.  相似文献   

19.
The proposed waste packages for the disposal of high-level radioactive waste at the potential repository at Yucca Mountain, Nevada, consist of an outer container and inner container. The outer container is made of alloy 22, a corrosion-resistant Ni-Cr-Mo-W alloy, while the inner container is made of type 316 nuclear-grade stainless steel. Fabrication processes such as welding and postweld heat treatments can induce changes to the microstructure of alloy 22. Such microstructural changes can reduce ductility and impact strength and promote localized corrosion. Environmental conditions within the emplacement drifts, such as composition of solutions contacting the waste packages, can also affect localized corrosion susceptibility. In this study, the effects of fabrication processes on impact strength, fracture toughness, and crevice-corrosion resistance of alloy 22 were investigated. For more information, contact D.S. Dunn, Southwest Research Institute, Center of Nuclear Waste Regulatory Analyses, 6220 Culebra Road, San Antonio, TX 78238-5166; (210) 522-6090; fax (210) 522-5184; e-mail ddunn@swri.org.  相似文献   

20.
Stress corrosion cracking (SCC) in the fusion boundary (FB) region of an Alloy 182-low alloy steel (LAS) dissimilar weld joint in 288 °C water was investigated by experiments and finite element simulation. Creviced bent beam and crack growth rate (CGR) experiments showed that, while the FB was a barrier to SCC growth, further crack growth into LAS was activated by a combined effect of sulfate and dissolved oxygen in water. Finite element simulation suggested that a positive gradient of hardness as the crack approached to the FB in dilution zone caused decreased CGR. Role of microstructure and water chemistry in SCC was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号