首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 453 毫秒
1.
在瞬态过程中,当处于承压状态下的反应堆压力容器(RPV)的内表面被快速冷却时,即为承压热冲击(PTS)。由此,反应堆压力容器可能出现贯穿裂纹而失效。为分析PTS事件导致RPV出现裂纹的频率,需要进行概率安全评价(PSA)。通过PSA模型确定可能引起PTS的事件序列,并结合这些序列的热工水力分析结果,为PTS概率断裂力学分析提供支持。  相似文献   

2.
LOCA下具有表面裂纹的反应堆压力容器承压热冲击分析   总被引:1,自引:0,他引:1  
陆维  何铮 《原子能科学技术》2017,51(8):1407-1412
失水事故(LOCA)瞬态下,具有半椭圆形表面裂纹的反应堆压力容器(RPV)承压热冲击(PTS)问题被研究。采用有限元方法计算瞬态过程的热-应力响应;采用影响函数法计算应力强度因子,分别对母材和堆焊层内的应力进行分解,从而解决了由于堆焊层存在造成的应力拟合困难带来的计算偏差。编制了相应的断裂分析程序,对LOCA下RPV的结构完整性进行了分析。结果表明,在研究的LOCA下,整个瞬态过程中RPV应力强度因子均未超过材料断裂韧性,压力容器结构安全。本文研究为RPV在PTS下的结构完整性评估提供理论指导。  相似文献   

3.
为了研究压水堆因“直接安注”冷水注入压力容器下降环腔而导致的承压热冲击(PTS)热工水力问题,基于1:10比例模型,应用计算流体力学软件FLUENT5.4进行了紊流流动换热的数值模拟分析,同时进行了常压瞬态传热实验研究。针对下降环腔折算流速0.5 m/s,安注流速10m/s的典型工况,研究了安注水开启后下降环腔内的瞬态流动换热特性,数值模拟与实验结果吻合良好。考察了压力容器安注接管出口区环形焊缝区及堆芯段筒体中子强辐照区所承受的热冲击状况,基于稳态流动研究了下降环腔内流体混合特性及流动机理,为热冲击分析提供参考。  相似文献   

4.
《核技术》2015,(9)
针对压水堆的复杂结构特点,对堆芯采用多孔介质模型,建立完整的压力容器堆芯模型,使用商用软件CFX对压力容器堆芯的热工水力特性进行数值模拟,得到偏环运行和典型事故工况下冷却剂的热工水力响应特性。计算结果表明:应用多孔介质模型能有效正确直观显示堆芯的冷却剂温度分布情况,在偏环运行工况下堆芯会出现偏心现象,而通过瞬态事故工况计算结果表明堆芯中上部冷却剂温度最高,对压水堆的热工安全具有一定指导作用。  相似文献   

5.
通过ABAQUS程序对反应堆压力容器简体裂纹进行了弹塑性断裂力学有限元分析,计算了在热冲击(PTS)瞬态作用下裂纹尖端的应力强度因子KI、J积分.同时,与工程方法计算的结果进行了比较,结果表明:工程方法在PTS计算分析时较三维弹塑性断裂力学有限元方法的计算值偏大,计算结果保守.  相似文献   

6.
为了研究压水堆因安注冷水直接注入反应堆压力容器下降环腔而导致的承压热冲击(PTS)热工水力问题,基于1∶10比例模型,应用计算流体力学商用软件FLUENT5.4进行了紊流流动换热的数值模拟分析,同时进行了常压传热实验研究。针对下降环腔折算流速0.5m/s,安注流速10m/s的典型工况,研究了压力容器下降环腔的壁面换热特性。通过分析下降环腔内的流动及混合特性,从流动机理上解释了压力容器内壁上准重接触点附近换热强烈的现象,并指出壁面换热强弱与近壁流体紊流脉动动能密切相关,为热冲击分析提供参考。  相似文献   

7.
先进压水堆熔融物堆内滞留参数不确定分析研究   总被引:2,自引:2,他引:0  
压水堆核电厂在严重事故下将发生堆芯熔化事故而形成熔融池。形成熔融池的过程具有很大的不确定性,这影响到反应堆压力容器熔融物堆内滞留(IVR)策略的有效性。本工作以AP1000核电厂两层IVR模型为研究对象,对成功实施反应堆压力容器外部冷却(ERVC)的假想严重事故进行了熔融池参数不确定性分析,包括参数的敏感性分析和使用拉丁超立方抽样的概率分析。结果表明:衰变功率对IVR评价参数影响最大,应采取措施(如上堆腔注水)尽量延缓堆芯熔化的时间;熔融物中不锈钢的质量将对金属层参数造成较大影响,可考虑在压力容器内布置牺牲性材料来减小金属层的集热效应;氧化物层外压力容器失效的概率仅为1.2%,但金属层外压力容器失效的概率高达20%。本结果对今后IVR策略研究和设计具有一定的指导意义,同时也为压水堆核电厂安全评审提供理论支持。  相似文献   

8.
本工作耦合建立了600 MW压水堆核电厂热工水力、裂变产物行为和放射性后果评价的分析模型,选取SB-LOCA、SGTR、SBO和LOFW等4个高压熔堆事故序列,研究了主回路卸压对压力容器外裂变产物释放的影响,包括主回路卸压对压力容器外裂变产物释放的缓解效应和其他负面影响。分析表明:实施主回路卸压可缓解高压熔堆事故序列下压力容器外的释放,但卸压工况下事故早期安全壳内的气载放射性活度较基准工况下的大。相关分析结论可作为严重事故管理导则制定的技术基础。  相似文献   

9.
均相流蒸汽发生器瞬态分析模型   总被引:3,自引:0,他引:3  
刘松宇 《核动力工程》1994,15(3):230-235
本文介绍了压水堆核电厂蒸汽发生器的一维均相流瞬态分析模型。基于该模型开发的程序计算结果与法国BUGEY4蒸汽发生器上的试验结果及ATHOS程序的计算结果较好符合,该模型可用于分析压堆核电厂U型管自然循环式蒸汽发生器的热工水力瞬态过程。  相似文献   

10.
黄倩倩  吕炜枫  熊军 《辐射防护》2019,39(5):391-395
压水堆核电厂停堆开盖时刻主冷却剂放射性浓度限值是核电厂的重要设计参数。本文基于停堆开盖后厂内辐射风险来源分析,建立了适用于压水堆核电厂停堆压力容器开盖时刻主冷却剂中的放射性浓度控制值评估方法,并采用欧洲第三代压水堆技术方案(EPR)堆型核电厂的设计参数对建立的方法进行了验证。验证结果表明:基于此方法得出的停堆开盖限值与EPR堆型核电厂原设计较接近。  相似文献   

11.
The reactor pressure vessel (RPV) is the most critical component in nuclear power plants, housing the reactor core and serving as a part of the primary system pressure boundary. Because of its proximity to the reactor core, the RPV is subjected to high fast neutron flux, losing ductility and fracture toughness. At the events of pressurized thermal shock (PTS), highly embrittled RPV may not have a sufficient safety margin for fast fracture. The US NRC PTS rule requires that the reference temperature (RTPTS) should be limited to ensure sufficient safety margins against PTS. RTPTS=270°F was defined as the screening criterion for axial welds based on extensive quantitative evaluation of associated risks. For circumferential welds, a technical margin of 30°F was added to account for the effects of flaw orientation without same level of quantitative analysis. In this paper, the validity of the technical margin for circumferential welds is examined by comparing the quantitative risks depending on the flaw orientation. First, the result of the original work on axial welds was reproduced. Then, the risk associated with circumferential flaws was evaluated at the identical condition except for flaw orientation. The difference in screening criteria due to flaw orientation was at least 55°F, suggesting that current PTS screening criteria for circumferential flaws do not represent the same level of associated risks as that for axial flaws.  相似文献   

12.
During the operation of a pressurized water reactor, a certain type of transients could induce rapid cooldown of the reactor pressure vessel (RPV) with relatively high or increasing system pressure. This induces a high tensile stress at the inner surface of the RPV, which is called the pressurized thermal shock (PTS). The structural integrity of the RPV during PTS should be evaluated assuming the existence of a flaw at the vessel. For the quantitative evaluation of the vessel failure risk associated with PTS, the probabilistic fracture mechanics (PFM) analysis technique has been widely used. But along with PFM analysis, deterministic analysis is also required to determine the critical time interval in the transient during which mitigating action can be effective. In this study, therefore, the procedure for the deterministic fracture mechanics analysis of RPV during PTS is investigated using the critical crack depth diagram and the computer program to generate it is developed. Four transients of typical PTS, steam generator tube rupture, small break loss of coolant accident and steam line break are analyzed, and their response characteristics such as critical crack depth and critical time interval from the initiation of the transient are investigated.  相似文献   

13.
This spinning cylinder experiment, organised under the auspices of the Network for the Evaluation of Steel Components (NESC), is designed to address the cleavage initiation behaviour of axial subclad and surface breaking flaws in end of life RPV material under pressurised thermal shock (PTS) transient conditions. Pre-test structural integrity assessments have been performed to assist in the detailed design of the experiment and in particular the specification of the initial defect sizes. The results presented offer an insight into the influences of experimental variables on the probability of realising a cleavage event during the transient.  相似文献   

14.
To investigate the effect of the cladding on the behaviour of postulated near surface cracks in the wall of a nuclear pressure vessel under thermal shock transients, two model experiments on cladded plates with artificially introduced cracks were performed. In numerical finite element analyses temperatures and stresses as well as crack driving force for different parts of the crack front were calculated for the applied loads. The results were used to verify analytical defect assessment methods and to analyse the crack behaviour. A comparison of observed crack initiation and arrest events for a subclad and for a surface crack experiment with results of analytical and FE analyses shows good agreement.  相似文献   

15.
Two specific problems within the safety case of Stade RPV have been analysed: brittle fracture initiation and arrest under strip type emergency core cooling conditions and safety margins against ductile failure from deep cracks as postulated by ASME- and German KTA-rules. For EOL material conditions exclusion of initiation is shown for cracks of more than twice the size which is safely detectable by NDE; for arbitrarily postulated large cracks it is demonstrated that they are arrested well within the allowed depth of of the wall thickness; therefore no critical crack size exists for Stade RPV under strip cooling. Growth in depth of an assumed circumferential flaw in the girth weld embrittled at EOL could occur only at upper shelf temperatures and by loads higher than about twice the service pressure; leak before break was demonstrated in a constraint-modified JR-curve crack-growth analysis. But neither a transient nor the plant itself would be able to provide the necessary high loads. The LEFM and EPFM proofs are summarized in a multibarrier safety scheme.  相似文献   

16.
The recent operating experience of the Pressurized Water Reactor (PWR) Industry has focused increasing attention on the issue of reactor vessel pressurized thermal shock (PTS). Previous reactor vessel integrity concerns have led to changes in vessel and plant system design and to operating procedures, and increased attention to the PTS issue is causing consideration of further modifications. Events such as excess feedwater, loss of normal feedwater, and steam generator tube rupture have led to significant primary system cooldowns. Each of these cooldown transients occurred concurrently with a relatively high primary system pressure. Consideration of these and other postulated cooldown events has drawn attention to the impact of operator action and control system effects on reactor vessel PTS.A methodology, which couples event sequence analysis with probabilistic fracture mechanics analyses, was developed to identify those events that are of primary concern for reactor vessel integrity. Operating experience is utilized to aid in defining the appropriate event sequences and event frequencies of occurrence for the evaluation.Once the specific event sequences of concern are identified, detailed thermal-hydraulic and structural evaluations can be performed to determine the conditions required to minimize the extension of postulated flaws or enhance flaw arrest in the reactor vessel. This paper addresses key aspects of the thermal-hydraulic and fracture mechanics analyses of the reactor vessel. The effects of incomplete mixing of safety injection flow in the primary cold leg and vessel downcomer and the application of warm prestressing are emphasized. The results of these analyses are being used to define further modifications in vessel and plant system design and to operating procedures.Previous design considerations that have evolved as a result of reactor vessel integrity evaluations are mentioned. These include the development of realistic design analysis tools and selection of plant system modifications. Modifications that are being developed or are under consideration are also mentioned. These include vessel fluence reductions, additional modifications to operating procedures, increased use of probabilistic event sequence and fracture mechanics analysis methods, enhanced material fracture toughness, and reductions in the severity or frequency of occurrence of dominant reactor vessel PTS transients.  相似文献   

17.
承压热冲击现象在核电厂延寿评估中应被重点关注。本文针对恰希玛核电厂1号机组的压力容器及堆内构件建立了完整的CFD模型,计算了正常工况下压力容器内冷却剂的速度场和温度场分布,计算结果与试验结果符合良好。本文详细研究了蒸汽发生器传热管破裂事故工况下压力容器接管及下降段中冷却剂的热工水力特性,并将计算结果与RELAP5计算结果进行对比,结果表明二者符合良好。本文研究可为反应堆压力容器老化管理评估的计算分析工作提供重要参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号