首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 71 毫秒
1.
活动轮廓模型目标跟踪算法综述   总被引:4,自引:0,他引:4       下载免费PDF全文
目标跟踪是当前计算机视觉领域最活跃的研究主题。首先对基本的跟踪类型进行了介绍;然后讨论了基于活动轮廓模型的图像分割,重点分析了参数活动轮廓模型的梯度矢量流模型(Gradient Vector Flow,GVF),以及几何活动轮廓模型中的模型;并讨论了基于粒子滤波的目标跟踪算法的研究现状,最后展望了这一领域未来研究的热点。  相似文献   

2.
基于分类模型的目标跟踪算法采用分类模型实现对多目标的跟踪。在传统算法中目标跟踪的对象是每个传感器的实时采样,而在分类模型中将传感器采样根据分类规则进行分类。然后将类的特征作为一个新的采样为下一层的模型提供输入,可以减少计算的复杂度。该模型是一个可扩展模型,可以为分类器设计不同的算法对模型进行扩展。模型自身采用低耦合的层次化设计,每一层均可以采用不同的分类器,这样可以充分利用各种分类算法的优点。  相似文献   

3.
自适应尺度目标跟踪算法   总被引:1,自引:0,他引:1  
针对复杂情况下变尺度目标跟踪问题,提出一种基于粒子滤波的自适应尺度目标跟踪算法.根据参考目标的颜色分布,将参考目标分为多个区域,每个区域的颜色分布用高斯模型表示,区域的位置关系构成了对参考目标的空间约束;根据目标分割区域的颜色分布和空间约束关系构造目标外观模型,结合粒子滤波搜索目标位置并检测目标的尺度变化.目标外观模型同时包含了空间及颜色信息,提高了跟踪算法在复杂情况下检测目标尺度变化的可靠性和准确性.实验结果表明,该算法在目标具有明显尺度变化、姿态改变和部分遮挡的情况下,可以获得准确和鲁棒的跟踪结果.  相似文献   

4.
本文针对单目标多径跟踪问题提出了一种基于粒子滤波的多径伯努利跟踪算法.该算法首先利用多径伯努利滤波算法解决了超视距雷达系统中的多径传播问题,然后结合粒子滤波实现方式解决了系统模型非线性问题.仿真实验表明该算法比传统的高斯混合多径伯努利滤波具有更高的跟踪精度.  相似文献   

5.
针对传统的KCF(核相关滤波器)目标跟踪算法在严重遮挡情况下出现目标跟踪漂移和丢失的问题,提出了一种改进的KCF目标跟踪算法.在传统的算法上增加了遮挡判断,如没有出现遮挡,则用KCF进行跟踪;若发生遮挡则用粒子滤波进行预测,然后把预测位置送给KCF算法.最后OTB-13的测试库选择David2、David3和Soccer视频遮挡序列进行跟踪测试,跟踪结果表明了改进方法的有效性;然后选择50组视频序列比较算法的有效性,相比传统的KCF算法,其跟踪精度和成功率分别提高了6.1%和2.9%.在目标发生严重遮挡时,该算法具有良好的鲁棒性.  相似文献   

6.
为提高对复杂环境下小目标的联合检测和跟踪性能,提出了一种基于粒子滤波的小目标先跟踪后检测(TBD)算法.通过粒子滤波对小目标的运动状态和出现状态进行联合采样,并采用Unscented粒子滤波(UPF)方法对TBD算法进行了具体实现.新算法真正将跟踪思想引入到目标检测中去,对小目标的联合检测与跟踪具有灵敏度高,捕获概率和跟踪性能高,对采样粒子数要求低等优点,能有效增强红外搜索与跟踪系统的"边检测边跟踪"能力.  相似文献   

7.
基于边缘粒子滤波的目标跟踪算法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了提高目标跟踪过程中粒子滤波结果的精度,将边缘粒子滤波算法应用于目标跟踪。首先将目标运动状态向量划分为线性和非线性两个子向量,然后,采用卡尔曼滤波方法处理线性状态子向量,采用粒子滤波方法处理非线性状态子向量。使用边缘粒子滤波算法和标准粒子滤波算法对目标进行跟踪仿真。仿真结果表明:将边缘粒子滤波算法应用在目标跟踪过程中,能够取得更高的跟踪精度;时间复杂度增加仅6%;在粒子数相对较少的条件下,仍能够保持较好的滤波性能。  相似文献   

8.
基于目标跟踪的粒子群粒子滤波算法研究   总被引:3,自引:0,他引:3  
针对粒子滤波方法在重采样阶段容易造成样本有效性和多样性的损失,导致了样本贫化问题,提出了一种改进的粒子滤波算法.算法将粒子群优化思想引入粒子滤波中,在粒子采样过程前先利用粒子群算法进行优化.粒子群算法将最新观测值融合到粒子进化公式中,大部分粒子经过粒子群优化后,朝着后验概率分布比较密集的区域运动,聚集在最优粒子附近,使粒子的权值被提高,避免了在重新采样过程中被舍弃,进而缓解了样本被贫化问题.目标跟踪系统中的位置估计由于物体运动具有突然性,很难准确估计.采用非线性目标跟踪模型和分时恒定值模型分别研究改进粒子滤波算法对误差均方值的影响.仿真结果表明改进算法与常规粒子滤波算法和扩展卡曼滤波算法相比,更加有效地降低变量的误差均方值,从而提高了滤波性能.  相似文献   

9.
在粒子滤波的基础上融合扩展卡尔曼滤波算法,融合后的算法在计算提议概率密度分布时,充分考虑当前时刻的量测,使粒子的分布更加接近状态的后验概率分布.将此改进粒子滤波算法在"当前"统计模型框架下进行机动目标自适应跟踪.仿真实验验证了该种方法对机动目标的良好自适应跟踪性能.  相似文献   

10.
基于目标跟踪的粒子滤波重采样算法研究   总被引:3,自引:0,他引:3  
袁韵洁  张怡  张玲玲 《计算机仿真》2010,27(1):326-329,354
传统粒子滤波(PF)中,重采样步骤里存在着粒子的"平均化"现象,导致粒子本身概率大小的因素被忽略,没有充分利用粒子集所包含的信息。通过改进抛弃小权值粒子的原则,以及充分利用粒子权值大小所代表的意义来进行粒子复制的两点进行算法改进,采用一维非线性目标跟踪模型和新的二维动态跟踪模型分别研究改进PF算法对于平均RMSE的影响。通过仿真,证明了改进后的算法可以显著降低变量的平均RMSE,特别是在二位动态跟踪模型中,使位置坐标和速度两种变量的平均均方根误差(RMSE)都有所改善,从而提高了滤波性能。  相似文献   

11.
水平集几何活动轮廓模型能较好地适应曲线的拓扑变化.为了跟踪和获取刚体和非刚体运动目标的轮廓信息,提出了一种基于改进测地线活动轮廓(GAC)模型和Kalman滤波相结合的算法以检测和跟踪运动目标.该算法首先采用高斯混合模型和背景差分获取目标的运动区域,在运动区域内采用引入距离规则化项的GAC模型进行曲线演化,使改进GAC模型在运动目标的真实轮廓处收敛;然后通过结合Kalman滤波预测目标下一帧的位置,实现对目标轮廓跟踪.实验结果表明,该方法适用于刚体和非刚体目标,在部分遮挡的情况下也能保持良好的检测和跟踪效果.  相似文献   

12.
基于Snake模型的视频对象分割和跟踪算法   总被引:1,自引:1,他引:1  
视频对象的分割是基于内容的视频处理中重要的组成部分。提出并实现了一种半自动视频对象分割和跟踪算法。算法主要基于Williams活动轮廓模型,通过求取轮廓点的局部能量最小值对轮廓线进行更新。轮廓扩张技术用来追踪变形的轮廓边缘。通过对轮廓中心点运动的统计,预测对象的运动方向和大小。实验仿真结果表明,这种改进的Snake算法能够收缩到图像的凹陷部分,而且能较好地跟踪视频对象的运动。  相似文献   

13.
为解决红外运动目标跟踪中的遮挡、形变等问题,提出一种基于粒子滤波的跟踪方法。该方法首先利用目标区域的灰度分布,建立了一种基于统计直方图的系统观测概率模型。并将飞机目标的运动看作惯性受限的非平稳过程,采用微分线性拟合模型作为系统状态转移模型。序列图像的实验表明:该算法能够在目标高速运动或发生遮挡的情况下稳健跟踪目标,其总体性能优于Mean Shift算法。  相似文献   

14.
梁楠  高世伟  郭雷  王瀛 《计算机应用》2011,31(9):2489-2492
在粒子滤波框架下,估计的准确性受到建议分布选取的影响很大。传统的粒子滤波通常采用系统转移概率作为建议分布,但传统的建议分布选取方法由于没有考虑新的观测信息,因此不能产生准确的估计值。为此采用一种叫做Galerkin法的数学工具去构造建议分布,依据该方法构造的建议分布相对传统的方法提高了粒子滤波估计的准确性。同时,在新的跟踪算法框架中,将颜色模型和形状模型进行自适应的融合,并提出了一种新的模型更新方法,提高了目标跟踪的稳定性。实验结果证明了该跟踪算法的有效性。  相似文献   

15.
基于粒子滤波的红外运动目标跟踪   总被引:1,自引:0,他引:1  
于勇  郭雷 《计算机应用》2008,28(6):1543-1545
提出一种基于粒子滤波及Mean Shift算法的红外运动目标跟踪方法。该方法首先利用目标区域的灰度分布,建立了一种基于统计直方图的系统观测概率模型,并针对红外目标机动性强,需要大量粒子才能保证算法鲁棒性的问题,将Mean Shift算法引入到粒子更新的过程中,使粒子分布在观测的局部区域内,在利用少量粒子实现分布多样性的同时,有效克服了粒子退化现象。序列图像的实验表明:该算法能够在目标高速运动或发生遮挡的情况下稳健跟踪目标,其总体性能优于传统的粒子滤波算法。  相似文献   

16.
基于时空联合双重约束Snake算法的运动目标分割   总被引:1,自引:0,他引:1  
提出了一种针对运动目标进行分割的STC(Spatio Temporal Combined) Snake算法。该方法利用待分割帧图像的灰度梯度及其和相邻帧图像的时域信息,构造一种时空联合双重约束的外部能量函数,实现对Snake曲线的变形和收敛。对Snake轮廓进行初始化时,首先将相邻帧图像进行减运算,提取出大致的运动区域,然后再以该区域的外接矩形的长和宽为轴长,在该区域上构造一个椭圆,等间距提取该椭圆形上的N个点,形成Snake的初始化轮廓。实验结果表明,该方法是有效可行的,可精确的分割出非刚体的运动目标。  相似文献   

17.
针对遮挡情况下相关滤波算法跟踪精度下降的问题,提出了一种基于多子块联合估计的核相关滤波跟踪方法。首先依据初始帧跟踪框的几何特征对目标自适应分块,并采用KCF方法对各子块独立跟踪得到联合置信图;然后以上帧目标的位置及尺度作为先验信息对搜索区域采样,同时将样本框中置信图的权值密度作为观测值,利用粒子滤波算法实现候选目标的最优估计;最后对置信度较低的子块反向投影至上帧图像进行遮挡检测,防止模板错误更新。定性和定量实验结果表明,该方法与原始KCF算法相比跟踪精度提升约10%,具有良好的抗遮挡性,并对目标尺度变化具有一定的估计能力。  相似文献   

18.
传统的基于颜色直方图的粒子滤波跟踪算法不能很好地利用跟踪对象的空间结构信息,因此在邻域颜色相似或目标模型微小变化时,不能取得良好的跟踪效果。提出一种融合目标特征和目标空间位置信息的粒子滤波跟踪算法,该算法鉴于目标空间位置包含跟踪对象一定的结构信息,可以和目标特征互为补充,利用定义的融合目标特征和目标空间位置的度量函数来进行跟踪对象相似度度量,以提高跟踪算法的稳健性和精确性。同时针对粒子滤波计算粒子相似度时可并行的特点,运用OpenMP共享存储并行计算进行粒子滤波跟踪的加速。实验表明,基于融合目标特征和空间信息的粒子滤波跟踪算法能得到更鲁棒的跟踪效果,可以有效地提高目标跟踪的速度。  相似文献   

19.
基于灰色预测模型和粒子滤波的视觉目标跟踪算法   总被引:1,自引:0,他引:1  
结合灰色预测模型和粒子滤波,提出一种新的视觉目标跟踪算法.由于粒子滤波未考虑先验信息对建议分布产生的指导作用,不能很好地逼近后验概率分布,对此,采用历史状态估计序列作为先验信息,建立该序列的灰色预测模型来预测产生建议分布.与粒子滤波、卡尔曼粒子滤波和无迹粒子滤波进行对比实验,结果表明所提出的算法在视觉目标跟踪中具有更好的性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号