首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
以Fe2O3为铁源,NH4H2PO4为磷源,Li2CO3为锂源,蔗糖为碳添加剂,应用碳热还原一步烧结法制备了LiFePO4/C复合粉体材料,系统的研究了烧结温度、烧结时间和锂铁比对样品电化学性能的影响。研究结果表明,对电化学性能影响因素最大的是烧结温度、其次是锂铁比,最后是烧结时间。当烧结温度为700℃、锂铁比为1.00、烧结时间为12 h时样品所得的电化学性能最佳,它在0.1C,0.5C和1.0C倍率下的首次放电比容量分别为130.1,118.2和105.6 mAh.g-1,经20次循环后,不同倍率下样品的容量的保持率分别为99.8%,98.9%和97.5%。  相似文献   

2.
利用间歇式高温高压水热设备在超临界和亚临界条件下合成纯度高、结晶度好的亚微米级LiFePO4颗粒,通过XRD、SEM、充放电测试对LiFePO4的结构、形貌和电化学性能进行表征,并考查反应温度、压力和3种模板剂对制备的LiFePO4材料的结构、形貌及电化学性能的影响。结果表明温度和压力的升高有利于合成较小粒径、均一分布的颗粒,以PVP作为模板剂得到的样品性能最佳,制备的LiFePO4颗粒粒径为200~600 nm,0.1 C和1 C倍率下的首次放电比容量分别为141.2 mAh/g和113.6 mAh/g,1C倍率下循环100次,其容量保持率为96.0%,制备的材料具有优异的倍率性能。  相似文献   

3.
针对磷酸钒锂电导率低的问题,以硝酸锂、偏钒酸铵、磷酸二氢铵为原料,甘氨酸为络合剂和燃料,葡萄糖为碳源,硝酸铝为铝源,采用溶液燃烧合成法制备铝掺杂的Li_3V_2(PO_4)_3/C粉末,以改善其电化学性能。将制备得到的铝掺杂的Li_3V_2(PO_4)_3/C粉末作为锂离子电池正极材组装成电池进行了恒电流充放电测试、循环伏安(CV)和交流阻抗(EIS)等电化学性能测试。结果表明:铝掺杂能有效提高磷酸钒锂电导率,不同的铝掺杂比例的磷酸钒锂具有不同的的电子电导率和锂离子扩散速率,从而具有不同的放电比容量、循环性能和倍率性能;当铝掺杂含量为1%时,磷酸钒锂具有最优的电化学性能,在充放电速度为10C循环500次后放电容量为104.6 mAh/g。  相似文献   

4.
以硫酸亚铁、磷酸、氢氧化锂为原料,通过共沉淀法合成磷酸铁锂前驱体,再经过焙烧得到高倍率性能磷酸铁锂复合材料(LiFePO_4/C)。研究了前驱体焙烧过程中温度对样品形貌及电化学性能的影响。结果表明:产出物相为磷酸铁锂,颗粒呈现较好的球形形貌,750℃煅烧得到的样品显示出最高的电化学性能,电导率为5.10S/m,振实密度为1.19g/cm~3,在0.1C倍率下首次放电比容量达到145.8mAh/g,内阻为139.64Ω,循环伏安曲线上下对称,有很好的循环可逆性。  相似文献   

5.
研究了不同富锂量对锰酸锂性能的影响.对合成的材料进行了XRD、SEM、全电池充放电测试.结果表明,在热处理温度为920℃时,合成材料均为尖晶石相,随着富锂量的增加,颗粒的一次粒子粗化明显,比容量减小,倍率性能和循环性能提高;当富锂量为0.20 mol时,样品综合电化学性能最佳,1C放电比容量为90.4 mA·h/g,25℃和55℃下的1C充放50次,循环保持率分别为97.9%和94.1%.  相似文献   

6.
锂离子电池正极材料LiFePO4的制备   总被引:2,自引:0,他引:2  
对制备橄榄石型锂离子电池正极材料LiFePO4进行了实验研究,采用固相合成法合成了LiFePO4和掺杂碳的LiFePO4正极材料。分析测试结果表明:掺杂碳的LiFePO4作为正极材料具有良好的电化学性能,在0.1C倍率下放电,其室温初始放电容量为130mA·h/g,循环10次后几乎没有衰减。  相似文献   

7.
采用微波法制备锂离子电池正极材料LiFePO4,通过X射线衍射(XRD)、扫描电镜(SEM)、循环伏安和恒电流充放电测试等方法对材料的结构、表观形貌及电化学性能进行表征,考察了葡萄糖、导电碳黑等不同碳源对目标材料性能的影响。结果表明,采用微波法能快速简便地制备出均相LiFePO4;于0.1C倍率下,以葡萄糖作为碳源的正极材料首次放电比容量可达131.1mA·h/g,充放电30次循环后,容量损失率为2.1%;以导电炭黑作为碳源的正极材料首次放电比容量为118.3mA·h/g,充放电30次循环后,容量损失率为5.2%。  相似文献   

8.
固相法合成锂离子电池正极材料LiFePO4   总被引:3,自引:0,他引:3  
橄榄石型LiFePO4是近年发展起来的一种锂离子电池正极材料,它的理论容量为170 mA·h/g,具有价格便宜、环境友好、无毒、无吸湿性、热稳定性好等优点,越来越受到人们的重视.通过固相法制备LiFePO4,分别考察了锂铁摩尔比与烧结时间对于LiFePO4的电化学性能的影响.结果表明,最佳的锂铁摩尔比为1.05,最佳的烧结时间应为24h,在0.1C倍率下放电,初始放电容量为140.4mA·h/g.  相似文献   

9.
以二氧化钛为钛源,碳酸锂为锂源,应用机械力辅助固相法一步合成钛酸锂(Li_4Ti_5O_(12))材料。使用TGA-DSC、XRD、SEM、粒度分析等手段,对产物的物相、形貌、粒度、电化学性能进行表征,将Li_4Ti_5O_(12)样品制成2032纽扣电池,通过充放电测试仪研究了首次库伦效率及充放电循环性能。结果表明:在机械力辅助下750℃反应3.5 h可制得纯相Li_4Ti_5O_(12),粒径分布均匀,主要集中在0.6~2.5μm,首次循环放电比容量为152.02 mAh/g,经过20次充放电循环,容量保持率为96.5%。  相似文献   

10.
锂离子电池新型正极材料LiFePO4/C的合成   总被引:1,自引:0,他引:1  
采用高温固相合成法合成了锂离子电池正极材料LiFePO4/C,并对其晶体结构、形貌和电化学性能进行了研究.结果表明:合成的LiFePO4/C材料为单一橄榄石型结构,颗粒分布比较均匀;以0.1 C倍率充放电时其初始比容量为115 mA·h/g,20次循环后其容量保持率为97%.  相似文献   

11.
采用高温碳热还原法在惰性气氛下合成单斜晶型Li3V2(PO4)3正极材料,考察活性炭、蔗糖和酚醛树脂等不同碳源对目标材料性能的影响。采用XRD、FE-SEM和电化学测试等手段对目标材料进行结构表征和性能测试。结果显示,以酚醛树脂作为碳源的正极材料具有优良的电化学性能,首次放电比容量达138 mA.h/g,到第10次循环容量降至122.9 mA.h/g。酚醛树脂作碳源能在加热的过程中固化交联成三维的网状结构,极有效地限制了粒子的进一步长大,材料粒径最小。  相似文献   

12.
不同锂源对尖晶石锰酸锂性能的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
采用溶胶凝胶法,以氢氧化锂、醋酸锂、硝酸锂为锂源制备锂离子电池正极材料尖晶石LiMn2O4,分别用XRD和SEM对产物的结构和微观形貌进行表征,并对其电化学性能进行了测试。结果表明,用硝酸锂制备的LiMn2O4有较好的的微观形貌及较高的初始比容量,用氢氧化锂制备的LiMn2O4有较好的循环性能。  相似文献   

13.
解决镍基正极材料LiNi0.8Co0.1Mn0.1O2的电化学循环稳定性和高温循环性能是其产业化推广应用的关键。研究了掺杂铌改性高镍正极材料,优化材料的电化学性能,提升循环稳定性。首先以硫酸盐为原料,在N2保护气氛下,采用共沉淀法合成三元球形Ni0.8Co0.1Mn0.1(OH)2前驱体,通过高温固相反应与LiOH·H2O,Nb2O5合成Li(Ni0.8Co0.1Mn0.11-xNbxO2(x=0,0.01,0.02,0.03)系列正极材料。X射线衍射结果表明,Nb5+离子可少量进入正极材料晶格,并在正极材料表面形成化学稳定性好的Li3NbO4。当x=0.02时,在室温25 ℃,电压2.75~4.2 V,0.2 C倍率下首次放电比容量为172.9 mAh/g,100次循环后容量保持率为97.47%,在50 ℃,0.5 C倍率下循环20次容量基本不变,平均放电比容量为183.7 mAh/g,且该样品具有较好的倍率性能。   相似文献   

14.
采用共沉淀-高温固相法制备LiNi0.6Co0.1Mn0.3O2锂离子正极材料,并使用X 射线衍射仪(XRD)和扫描电镜(SEM)技术分别表征其结构和形貌.然后将所得LiNi0.6Co0.1Mn0.3O2正极材料组装成扣式电池,并表征其电化学性能,探讨烧结温度和锂配量对其电化学性能的影响.结果表明:所得LiNi0.6Co0.1Mn0.3O2正极材料的放电比容量随烧结温度的升高而增大,且在900℃时表现出最佳的电化学性能.室温下,1C倍率下,锂配量(n(Li)/n(Ni+ Co+ Mn)=1.09)时,正极材料的首次放电容量为143.7 mAh/g,50次循环后,正极材料的放电比容量仍有141.3 mAh/g,容量保持率为98.3%.  相似文献   

15.
采用湿法回收技术从废旧锌锰干电池中回收锰,并以此为锰源制备锂离子电池正极材料锰酸锂。用XRD、SEM对产物的结构和微观形貌进行表征,并对其电化学性能进行测试。结果表明,该工艺合成的产物为尖晶石型LiMn2O4,纯度高,粒径分布均匀,初始比容量可达119mAh/g,适合用作锂离子电池正极材料。  相似文献   

16.
以KCl为熔盐,采用熔盐法合成了锂离子电池正极材料LiMn1/3Ni1/3Co1/3O2,扫描电子显微镜(SEM)显示此方法制备产物具有较好的晶形,颗粒较均匀.XRD表征结果显示产物为层状结构,充放电测试结果显示出材料在3.6 V平台附近有较大的可逆容量.在900℃时保温8 h时合成的LiMn1/3Ni1/3Co1/3O2具有较好的电化学性能,制作成AA电池,在2.75~4.2 V之间进行充放电测试,在1 C倍率下放电,LiMn1/3Ni1/3Co1/3O2的初始放电容量可达132.9 mAh/g,循环50多次后容量仍为124.6 mAh/g,容量保持率为93.75﹪.  相似文献   

17.
采用共沉淀法合成Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2前驱体,将前驱体和LiOH混合均匀后经高温煅烧合成了锂离子电池正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2,并对其进行电化学性能检测。试验表明,制备的电池在电压2.8~4.3V(vs.Li/Li+)区间内,0.1C倍率下的首次库伦效率为88.4%;在1C倍率下循环100次后,放电比容量为157.7mAh/g,容量保持率为96.6%。  相似文献   

18.
采用改进溶胶-凝胶法合成了具有良好的晶体结构和电化学稳定性的正极材料Li[Ni1/3Co1/3Mn1/3]0.9Ti0.1O2,通过优化前驱体的制备来提高原子混合程度,从而达到改善材料循环稳定性的目的。XRD测试表明,样品的Li+/Ni2+混排程度很低,TEM图片显示材料的结晶度很高,原子排列有序,这有利于实现更大的锂离子扩散系数。在0.5 C倍率下循环200次后,材料的容量保持率高达84.6%,与未掺钛的LiNi1/3Co1/3Mn1/3O2仅为52.0%相比,钛掺杂的材料表现出优异的电化学性能。此外,掺钛材料在0.1、0.2、0.5、1.0、2.0和5.0 C时具有更好的充放电倍率性能,分别为164.9、162.4、152.4、142.4、129.7和102.8 mAh/g。研究成果可以为设计具有更好电化学性能的锂离子电池材料提供参考。  相似文献   

19.
LiFe0.99RE0.01PO4/C cathode material was synthesized by solid-state reaction method using FeC2O4·2H2O, Li2CO3, NH4H2PO4, RE(NO3)3·nH2O as raw materials and glucose as a carbon source. The doping effects of rare earth ions, such as La3+, Ce3+, Nd3+, on the structure and electrochemical properties of LiFePO4/C cathode material were systematically investigated. The as-prepared samples were characterized by means of X-ray diffraction(XRD), scanning electron microscopy(SEM) and particle size analysis. The electrochemical properties were investigated in terms of constant-current charge/discharge cycling tests. The XRD results showed that the rare earth ions doping did not change the olivine structure of LiFePO4, and all the doped samples were of single-phase with high crystallinity. SEM and particle size analysis results showed that the doping of La3+, Ce3+ and Nd3+led to the decrease of particle size. The electrochemical results exhibited that the doping of La3+ and Ce3+ could improve the high-rate capability of LiFePO4/C cathode material, among which, the material doped with 1% Ce3+ exhibited the optimal electrochemical properties, whose specific discharge capacities could reach 128.9, 119.5 and 104.4 mAh/g at 1C, 2C and 5C rates, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号