首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
目的采用物理气相沉积磁控溅射方法,通过控制碳靶电流改变掺铬类石墨镀层的碳含量,在高速钢基体上制备不同厚度的掺铬类石墨镀层,以探究碳含量对掺铬类石墨镀层结构和性能的影响。方法采用压痕法和划痕法对镀层的膜基结合强度进行评价。采用维氏显微硬度计对镀层的硬度进行分析。采用ST-2258A四探针测试仪测量镀层的电导率。使用扫描电子显微镜对镀层的微观结构进行分析。使用摩擦磨损仪对镀层的摩擦学性能进行探究。结果随着碳靶电流的增加,掺铬类石墨镀层的截面柱状化现象越来越明显,表面团簇颗粒直径越来越大。碳靶电流为1 A时,镀层的截面形貌为细晶团簇结构;碳靶电流为3 A时,镀层截面产生柱状结构。镀层的复合硬度随着镀层碳靶电流的增加逐渐增大,在碳靶电流为3 A时,镀层的维氏硬度最大,为436HV。随着碳靶电流增加,镀层电导率逐渐上升。结论随着碳靶电流的增大,镀层致密度逐渐下降,镀层的电导率逐渐增加,镀层的摩擦系数逐渐减小,适当的碳靶电流能使类石墨镀层在功能化与力学性能上达到最佳效果。  相似文献   

2.
用非平衡磁控溅射离子镀技术制备含铬类石墨镀层,研究了石墨靶电流对磁控溅射法制备类石墨镀层摩擦性能的影响.通过扫描电镜、原子力显微镜、透射电镜等分析了镀层的表面形貌与组织.结果表明:所制备镀层的硬度随着石墨靶电流的升高而增加;镀层的摩擦系数和比磨损率随靶电流的增大呈现先降后升的趋势;扫描电镜和原子力显微镜图片分析表明镀层表面呈典型的岛团状聚集态,且随着石墨靶电流增大,镀层表面岛团状尺寸变大、镀层表面粗糙度随之增大.用高分辨透射电镜分析显示:靶电流较小时碳层中出现Cr元素富集区,随着石墨靶电流的增大,表面层中的Cr弥散分布.  相似文献   

3.
黄珂  刘文军  谭科  罗书径 《表面技术》2019,48(9):287-292
目的 改善CrC薄膜的制备工艺,提高薄膜的结合强度。方法 采用射频偏压辅助磁控溅射技术,以Cr和石墨为靶材,C2H2为反应气体,在M42高速钢表面制备梯度Cr/CrC膜。利用扫描电子显微镜(SEM)、能谱仪(EDS)、Raman光谱仪分析薄膜的微观形貌、成分组成、键结构,用纳米压痕仪、洛氏硬度计对薄膜的结合性能进行评价。结果 成功制备了表面致密均匀的梯度Cr/CrC薄膜,薄膜中sp3键含量随石墨靶射频功率的增加而呈现先增大后减小的趋势。薄膜的结合强度随射频功率的增大而先增大后减小,射频功率为250 W时,薄膜中含有最多的sp3键,并且有最高的硬度,硬度值为21 GPa。结论 纯Cr过渡层能有效吸收薄膜中的内应力,改善膜/基结合性能,对Cr/CrC薄膜结合强度有明显增强作用。石墨靶的射频功率大小对梯度Cr/CrC膜的结构和结合强度有显著影响,射频功率为250 W时,制备出的薄膜具有最高的硬度和结合强度。  相似文献   

4.
在不同的基片偏压下利用电弧离子镀技术制备氮化锆薄膜,以考察基片偏压对氮化锆薄膜微结构和表面形貌的影响。利用XRD、EPMA和FE-SEM等技术对不同偏压时得到ZrN薄膜的相结构、成分和表面形貌进行表征。结果表明,薄膜中存在立方氮化锆和六方纯锆相;随着基片偏压的增大,薄膜的择优取向由(111)变为(200),最后变为(111),晶粒尺寸由30nm减小至15nm。同时发现,随着基片偏压的增大,薄膜微结构由明显的柱状特征变为致密的等轴晶特征,表明由偏压增强的离子轰击能有效抑制柱状晶生长;薄膜沉积速率和锆氮摩尔比随着基片偏压的增大先增大后减小,在-50V时达到最大。  相似文献   

5.
采用电沉积法在纯铜基体上制备了银-石墨复合镀层,研究了镀液搅拌速率对银-石墨复合镀层耐蚀性和耐磨性的影响。结果表明:随着搅拌速率的增大,复合镀层中石墨的含量先增大后减小,自腐蚀电流密度和自腐蚀电位呈现先增大后减小的趋势,但整体变化幅度不大;搅拌速率为320~920r/min时,随着搅拌速率的增大,复合镀层摩擦因数增大,磨损率增大。考虑到工业生产要求,最佳搅拌速率为420r/min,此时制备的复合镀层的磨损率可低至8.13×10~(-14) m~3/(N·m)。  相似文献   

6.
MoN薄膜是一种具有潜在应用价值的薄膜材料,但对于其结构和性能的研究还较少。采用直流磁控溅射技术在304不锈钢基体表面沉积MoN薄膜,研究了脉冲偏压对MoN薄膜结构和性能的影响,并系统研究了MoN薄膜在不同摩擦条件下的摩擦磨损行为。采用X射线衍射仪和扫描电镜分析薄膜的晶相结构、晶粒尺寸、表面及断面形貌,采用HMV-2T显微硬度仪测试薄膜的显微硬度。采用UMT-TriboLab多功能摩擦磨损试验机评价薄膜的摩擦磨损性能,并用扫描电镜观察磨损表面,分析其磨损机制。结果表明:脉冲偏压显著影响直流磁控沉积的MoN薄膜的晶相结构、表面形貌、断面结构、硬度和摩擦磨损性能;随脉冲偏压的增大,MoN薄膜的膜厚、硬度都先增大后减小,而薄膜的磨损率却先减小后增大,其中-500 V脉冲偏压下沉积的MoN薄膜具有最高硬度为7731 N/mm2,以及最低的磨损率为5.8×10-7 mm3/(N·m)。此外,MoN薄膜在不同载荷和转速的摩擦条件下表现出不同的摩擦学行为。  相似文献   

7.
采用电弧离子镀技术在烧结钕铁硼表面沉积 Al 薄膜。 利用表面轮廓仪、扫描电镜、激光共聚焦、电化学工作站和盐雾试验箱分析了负偏压和本底真空度对镀层形貌、性能和沉积速率的影响。 结果表明,镀层表面的液滴数量和粒径随负偏压和本底真空度的增加而减小;沉积速率与负偏压成反比,而与本底真空度成正比。 在负偏压为-100 V 时沉积速率最大,达到 4. 85 μm/ h。 随着负偏压和本底真空度的增加,腐蚀电流密度减小,耐盐雾时长增加,负偏压为 -200 V 时 Al / NdFeB 样品具有较好的耐蚀性。  相似文献   

8.
利用扫描电镜(SEM),俄歇能谱分析(AES),X射线衍射分析(XRD)和电化学等技术,研究了磁控溅射沉积Al-Zn镀层的结构及其对铀的保护性能。结果表明施加偏压显著地影响Al-Zn镀层的结构和保护性能,在-100V偏压下沉积的Al-Zn镀层,其组织更致密,成分有择优重溅射现象并伴有合金相生成,更有利于铀的防腐保护。  相似文献   

9.
脉冲偏压对复合离子镀(Ti,Cu)N 薄膜结构与性能的影响   总被引:1,自引:1,他引:0  
目的 (Ti,Cu)N薄膜是一种新型的硬质涂层材料,关于其结构和性能的研究报道还较少。研究脉冲偏压对(Ti,Cu)N薄膜结构与性能的影响规律,以丰富该研究领域的成果。方法将多弧离子镀和磁控溅射离子镀相结合构成复合离子镀技术,采用该技术在不同脉冲偏压下于高速钢基体表面制备(Ti,Cu)N薄膜。分析薄膜的微观结构,测定沉积速率及薄膜显微硬度,通过摩擦磨损实验测定薄膜的摩擦系数。结果在不同偏压下获得的(Ti,Cu)N薄膜均呈晶态,具有(200)晶面择优取向,当脉冲偏压为-300 V时,薄膜的择优程度最明显。随着脉冲偏压的增加,薄膜表面大颗粒数量减少且尺寸变小,表面质量提高;沉积速率呈现先增大、后减小的趋势,在脉冲偏压为-400 V时最大,达到25.04 nm/min;薄膜硬度也呈现先增大、后减小的趋势,在脉冲偏压为-300 V时达到最大值1571.4HV。结论脉冲偏压对复合离子镀(Ti,Cu)N薄膜的表面形貌、择优取向、沉积速率和硬度均有影响。  相似文献   

10.
负偏压对多弧离子镀TiN薄膜的影响   总被引:4,自引:4,他引:0  
袁琳  高原  张维  王成磊  马志康  蔡航伟 《表面技术》2012,41(1):20-22,26
采用不同偏压,在201不锈钢表面进行多弧离子镀TiN薄膜,研究了偏压对薄膜表面形貌、硬度、相结构及耐蚀性的影响.研究表明:薄膜表面存在着许多液滴颗粒,随着偏压的增加,液滴减少,但过大的偏压会使表面出现凹坑;薄膜的显微硬度随偏压的升高先增大后减小,偏压为-200 V时的本征硬度为2 195HV;在3.5%的NaCl溶液中...  相似文献   

11.
Ti-doped graphite-like carbon (GLC) films with different microstructures and compositions were fabricated using magnetron sputtering technique. The influence of bias voltages on microstructure, hardness, internal stress, adhesion strength and tribological properties of the as-deposited GLC films were systemically investigated. The results showed that with increasing bias voltage, the graphite-like structure component (sp2 bond) in the GLC films increased, and the films gradually became much smoother and denser. The nanohardness and compressive internal stress increased significantly with the increase of bias voltage up to −300 V and were constant after −400 V. GLC films deposited with bias voltages in the range of -300--400 V exhibited optimum adhesion strength with the substrates. Both the friction coefficients and the wear rates of GLC films in ambient air and water decreased with increasing voltages in the lower bias range (0--300 V), however, they were constant for higher bias values (beyond −300 V) . In addition, the wear rate of GLC films under water-lubricated condition was significantly higher for voltages below −300 V but lower at high voltage than that under dry friction condition. The excellent tribological performance of Ti-doped GLC films prepared at higher bias voltages of −300--400 V are attributed to their high hardness, tribo-induced lubricating top-layers and planar (2D) graphite-like structure.  相似文献   

12.
The mirror-confinement-type electron cyclotron resonance(MCECR) plasma source has high plasma density and high electron temperature. It is quite useful in many plasma processing, and has been used for etching and thin-film deposition. The carbon films with 40 nm thickness were deposited by MCECR plasma sputtering method on Si, and the influence of substrate bias on the properties of carbon films was studied. The bonding structure of the film was analyzed by the X-ray photoelectron spectroscopy(XPS), the tribological properties were measured by the pin-on-disk(POD) tribometer, the nanohardness of the films was measured by the nanoindenter, and the deposition speed and the refractive index were measured by the ellipse meter. The better substrate bias was obtained, and the better properties of carbon films were obtained.  相似文献   

13.
基片负偏压对Cu膜纳米压入硬度及微观结构的影响   总被引:1,自引:0,他引:1  
测试了不同溅射偏压下Cu膜的纳米压入硬度,探讨了溅射偏压、残余应力及压痕尺寸效应对Cu膜硬度的影响。结果表明,随着溅射偏压的增大,薄膜晶粒尺寸及残余压应力均减小,导致薄膜的硬度增大,并在-80V达到最大值,随后有所降低。同时薄膜中的压痕尺寸效应对薄膜硬度随压入深度的分布有很大的影响。  相似文献   

14.
Applying negative bias voltages caused significant microstructure changes in arc ion plated CrN films. Nanocrystalline microstructures were obtained by adjusting the negative bias voltage. Structural characterizations of the films were carried out using X-ray diffractometry (XRD) and high-resolution transmission electron microscopy (HR-TEM). The results indicated that increasing ion bombardment by applying negative bias voltages resulted in the formation of defects in the CrN films, inducing microstructure evolution from micro-columnar to nanocrystalline. The microhardness and residual stresses of the films were also affected. Based on the experimental results, the evolution mechanisms of the film microstructure and properties were discussed by considering ion bombardment effects.  相似文献   

15.
The PbTe films were deposited onto ITO glass substrate by radio frequency magnetron sputtering. Effect of external direct current electrical field applied between substrate and target on the quality of films was investigated. Stylus surface profile, X-ray diffraction (XRD), atomic force microscope (AFM) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the films. The film thickness was measured by a conventional stylus surface profile. The crystal structure and lattice parameters of films were determined by using XRD. The surface morphology of the films was measured by AFM. The absorption coefficients and optical band gaps of films were found from FTIR. The sheet resistance of the samples was measured with a four-point probe and the resistivity of the film was calculated. All the obtained films were highly textured with a strong (2 0 0) orientation. With increasing bias voltage to −30 V, the property of crystal structure, surface morphology and absorption coefficients and resistivity were improved. However, further increase of substrate bias leads to transformation of the property.  相似文献   

16.
The Cr-doped hydrogen-GLC films were prepared by a hybrid magnetron sputtering system composed of a direct current magnetron sputtering (DC-MS) source of carbon and a high power impulse magnetron sputtering (HIPIMS) source of Cr with reactive gas of C2H2.The hydrogen-free GLC and Cr-doped GLC films were also prepared for comparison.The influence of substrate bias on the Cr-doped hydrogen-GLC films was investigated.With the increase of substrate bias from 100 V to 250 V,the re-sputtering of weak bonding sp2 firstly occurred and induced an increased sp3 bonding.However,the following sp3 to sp2 transformation resulted in a decreased sp3 bonding.The change trends of surface roughness and friction coefficient with the increased bias voltages were the same as those of sp3 bond.The lowest surface roughness and lowest friction coefficient corresponded to the highest sp3 with the Cr-GLC-H films at the bias voltage of-100 V.  相似文献   

17.
Thin films of ZrN/AlSiN were deposited on SKD 11 tool steel substrate using Zr and AlSi cathodes in an Ar/N2 gas mixture in a cathodic arc plasma deposition system. The influence of the AlSi cathode arc current and the substrate bias voltage on the mechanical and structural properties of the films was investigated. X-ray diffraction, electron probe micro-analysis, high resolution transmission electron microscopy, nanoindentation and profilometry were used to characterize the films. The ZrN/AlSiN thin films had a multilayered structure by rotating the substrate in which nano-crystalline ZrN layers alternated with amorphous AlSiN layers. The hardness of the films increased as the AlSi cathode arc current was raised from 35 to 40 A, and then decreased with a further increase of the current. The hardness of the films increased with the increase of the bias voltage from − 50 to − 100 V. Further increase in the bias voltage decreased the hardness. The films exhibited a maximum hardness of 38 GPa. With the increase of bias voltage, the residual stress of the films correlated well with the hardness.  相似文献   

18.
Carbon nitride films were deposited on Si (100) substrates using plasma-enhanced chemical vapor deposition (PECVD) technique from CH4 and N2 at different applied dc bias voltage. The microstructure, composition and chemical bonding of the resulting films were characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The mechanical properties such as hardness and elastic modulus of the films were evaluated using nano-indentation. As the results, the Raman spectra, showing the G and D bands, indicate the amorphous structure of the films. XPS and FTIR measurements demonstrate the existence of various carbon-nitride bonds in the films and the hydrogenation of carbon nitride phase. The composition ratio of N to C, the nano-hardness and the elastic modulus of the carbon nitride films increase with increasing dc bias voltage and reach the maximums at a dc bias voltage of 300 V, then they decrease with further increase of the dc bias voltage. Moreover, the XRD analyses indicate that the carbon nitride film contains some polycrystalline C3N4 phase embedded in the amorphous matrix at optimized deposition condition of dc bias voltage of 300 V.  相似文献   

19.
In order to investigate nanomechanical properties of nanostructured Ti metallic material, pure Ti films were prepared by magnetron sputtering at the bias voltage of 0-140 V. The microstructure of Ti films was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). It is interesting to find that the microstructure of pure Ti films was characterized by the composite structure of amorphous-like matrix embodied with nanocrystallines, and the crystallization was improved with the increase of bias voltage. The hardness of Ti films measured by nanoindentation tests shows a linear relationship with grain sizes in the scale of 6-15 nm. However, the pure Ti films exhibit a soft tendency characterized by a smaller slope of Hall-Petch relationship. In addition, the effect of bias voltage on the growth orientation of Ti films was discussed.  相似文献   

20.
Thin films of CrAlBN were deposited on SKD 11 tool steel substrate using Cr and AlB cathodes in a cathodic arc plasma deposition system. The influence of AlB cathode arc current and substrate bias voltage on the mechanical and the structural properties of the films was investigated. The CrAlBN thin films had a multilayered structure in which the nano-crystalline CrN layer alternated with the amorphous AlBN layer. The hardness of the films increased as the AlB cathode arc current was raised from 35 to 45 A, and then decreased with further increase of the current. The hardness of the films increased rapidly with the increase of the bias voltage from − 50 to − 150 V. Further increase in the bias voltage decreased the hardness. The maximum hardness of 48 GPa was obtained at the bias voltage of − 150 V. With the increase of bias voltage, a good correlation between the residual stress and the hardness of the films was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号