首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
目的通过调节偏压,改善无氢DLC薄膜的微观结构,提高其力学性能和减摩抗磨性能。方法采用离子束辅助增强磁控溅射系统,沉积不同偏压工艺的DLC薄膜。采用原子力显微镜(AFM)观察薄膜表面形貌,采用拉曼光谱仪对薄膜的微观结构进行分析,采用纳米压痕仪测试薄膜硬度及弹性模量,采用表面轮廓仪测定薄膜沉积前/后基体曲率变化,并计算薄膜的残余应力,采用大载荷划痕仪分析薄膜与不锈钢基体的结合力,采用TRB球-盘摩擦磨损试验机评价薄膜的摩擦学性能,采用白光共聚焦显微镜测量薄膜磨痕轮廓,并计算薄膜的磨损率。结果偏压对DLC薄膜表面形貌、微观结构、力学性能、摩擦学性能都有不同程度的影响。偏压升高导致碳离子能量升高,表面粗糙度呈现先减小后增加的趋势,-400V的薄膜表面具有最小的表面粗糙度且C─C sp^3键含量最多,这也导致了此偏压下薄膜的硬度最大。薄膜的结合性能与碳离子能量大小呈正相关,-800 V时具有3.98 N的最优结合性能。不同偏压工艺制备的薄膜摩擦系数随湿度的增加,均呈现减小的趋势,偏压为-400V时,薄膜在不同湿度环境中均显示出最优的摩擦学性能。结论偏压为-400 V时,DLC薄膜综合性能最优,其表面粗糙度、硬度、结合力和摩擦系数分别为2.5 nm、17.1 GPa、2.81 N和0.11。  相似文献   

2.
利用直流磁控溅射技术制备了三元硼碳氮(BCN)薄膜,通过改变靶功率(70 W和210 W)和基体偏压(-50 V~-400 V)得到不同成分和组织结构的薄膜.采用X射线光电子能谱仪和傅立叶红外光谱仪分析了薄膜的成分和结构.结果表明:靶功率增加使得薄膜成分发生改变,而基体偏压改变对薄膜中各元素的原子百分含量几乎没有影响;基体偏压的增加会引起高能粒子对基体的轰击作用增强,有利于薄膜中B-N键的形成,而且轰击能量越高越有利于sp3杂化的B-N键形成.  相似文献   

3.
MoN薄膜是一种具有潜在应用价值的薄膜材料,但对于其结构和性能的研究还较少。采用直流磁控溅射技术在304不锈钢基体表面沉积MoN薄膜,研究了脉冲偏压对MoN薄膜结构和性能的影响,并系统研究了MoN薄膜在不同摩擦条件下的摩擦磨损行为。采用X射线衍射仪和扫描电镜分析薄膜的晶相结构、晶粒尺寸、表面及断面形貌,采用HMV-2T显微硬度仪测试薄膜的显微硬度。采用UMT-TriboLab多功能摩擦磨损试验机评价薄膜的摩擦磨损性能,并用扫描电镜观察磨损表面,分析其磨损机制。结果表明:脉冲偏压显著影响直流磁控沉积的MoN薄膜的晶相结构、表面形貌、断面结构、硬度和摩擦磨损性能;随脉冲偏压的增大,MoN薄膜的膜厚、硬度都先增大后减小,而薄膜的磨损率却先减小后增大,其中-500 V脉冲偏压下沉积的MoN薄膜具有最高硬度为7731 N/mm2,以及最低的磨损率为5.8×10-7 mm3/(N·m)。此外,MoN薄膜在不同载荷和转速的摩擦条件下表现出不同的摩擦学行为。  相似文献   

4.
利用多弧离子镀-磁控溅射复合技术通过改变脉冲偏压在Si片与SS304基体表面制备了TiAlCN薄膜,研究了不同脉冲偏压对薄膜结构和力学性能的影响。薄膜成分、表面形貌、相结构及力学性能分别利用能量弥散X射线谱(EDS)、扫描电镜(SEM)、X射线衍射(XRD)和纳米压痕仪等设备进行表征。结果表明,随着脉冲负偏压的增加,薄膜中Ti元素的含量先减小后增大,而Al元素有相反的变化趋势。适当增大脉冲偏压,薄膜表面颗粒、凹坑等缺陷得到明显改善。物相分析表明TiAlCN薄膜主要由(Ti,Al)(C,N)相,Ti4N3-x相和Ti3Al相组成。薄膜平均硬度与弹性模量随脉冲负偏压的增加先增大后减小,在负偏压-200 V时达到最大值分别为36.8 GPa和410 GPa。  相似文献   

5.
打底层对铝合金表面GLC镀层组织和摩擦学特性的影响   总被引:1,自引:0,他引:1  
采用非平衡磁控溅射离子镀技术在铝合金表面分别制备了以Cr和Al为打底层,Cr-C和A1-Cr-C为过渡层的Cr/Cr C/类石墨碳(GLC)和Al/Al-Cr-C/GLC复合镀层,并与无打底层制备GLC镀层对比,系统研究了不同镀层微观结构、膜基结合力及摩擦学性能,结果表明,铝合金基体表面Cr打底层呈柱状晶生长,Cr/C过渡层无柱状晶特征,且随过渡层增厚,富Cr区域减少,实现了成分的梯度变化:A1打底层与铝合金基体间为一个整体,没有明显界面;Al Cr-C过渡层的成分也呈梯度变化;采用不同打底层和过渡层时.GLC层均为非晶态结构.较无打底层制备GLC镀层,Cr/Cr-C/GLC和Al/Al-Cr-C/GLC复合镀层与铝合金基底间的膜基结合力显著增强,以Al为打底层的复合镀层的失效临界载荷最大.磨损实验中,在不同载荷条件下2种复合镀层均具有低的摩擦系数.  相似文献   

6.
偏压对CrTiAlN镀层组织形貌及磨损性能的影响   总被引:6,自引:0,他引:6  
利用闭合场非平衡磁控溅射离子镀技术制备了耐磨CrTiAlN镀层,分析了溅射偏压对该镀层的形貌、相结构以及磨损性能的影响。研究表明:偏压对镀层的形貌、相结构以及与摩擦学性能有关的摩擦系数、硬度、结合力以及磨损率等参数都有影响。在制备CrTiAlN镀层的过程中,当偏压为-75V时镀层的耐磨损性最好,当偏压在-65V--85V变化时,镀层形貌的变化对镀层的磨损性能无明显影响,CrTiAlN镀层相结构的变化是影响磨损性能的主要原因。  相似文献   

7.
陈迪春  蒋百灵 《金属热处理》2005,30(Z1):211-214
使用闭合场非平衡磁控溅射离子镀体系于镁合金表面制备了CrAlTiN膜层,检测了膜层厚度和硬度,在扫描电子显微镜(SEM)下观察了膜层的表面形貌和截面形貌,使用了X衍射仪分析了膜层的相组成.结果表明薄膜组织为纤维状柱状晶组织,随着偏压增大,膜层表面致密性增强,颗粒头部平滑,颗粒间孔洞减少;CrAlTiN薄膜具有与CrN相同的晶体结构,在偏压为40V时出现了(111)晶面的择优取向,在60V时出现了(220)晶面的择优取向.  相似文献   

8.
负偏压对低温沉积TiN薄膜表面性能的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
白秀琴  李健 《中国表面工程》2005,18(5):20-23,27
研究了在低温磁控溅射沉积TiN薄膜过程中,负偏压对基体温度、薄膜表面性能、薄膜与基体界面结合强度以及摩擦学性能的影响.研究结果表明,加负偏压条件下,明显提高基体温度,有益于晶粒细化,提高硬度,改善色泽,提高TiN/基体的界面结合强度,但会引起表面轻微的粗糙化;摩擦学试验表明,负偏压对低温磁控溅射TiN薄膜及其摩擦副的摩擦磨损性能的影响较明显.  相似文献   

9.
采用电弧离子镀技术,以W18Cr4V高速钢为基体,调整基体负偏压,制得多个复合TiAlN薄膜试样,研究了基体负偏压对薄膜微观组织形貌、物相组成、晶格位向、硬度、厚度和沉积速率的影响。结果表明,过高或过低的负偏压会使得膜层表面不平整,显微硬度下降。当负偏压为200 V时,膜层的沉积速率最大;负偏压为150 V时,有利于薄膜(111)晶面的择优取向生长,且TiAlN膜的硬度最高。  相似文献   

10.
偏压对电弧离子镀薄膜表面形貌的影响机理   总被引:15,自引:0,他引:15  
在不同偏压下用电弧离子镀沉积TiN薄膜,采用扫描电子显微镜(sEM)观察薄膜表面大颗粒污染情况,并分析偏压对大颗粒的影响.结果表明,偏压对大颗粒的影响主要来自电场的排斥作用.直流偏压下,等离子体鞘层基本稳定,电子对大颗粒表面充电能力很弱,而脉冲偏压下,由于鞘层厚度不断变化,大颗粒不断进出于鞘层,电子对大颗粒表面的充电能力强,使其所带负电荷明显增多,受到基体的排斥力变大,大颗粒不易沉积到基体而使薄膜形貌得到有效改善.  相似文献   

11.
脉冲偏压对真空电弧沉积TiN薄膜组织与性能的影响   总被引:3,自引:0,他引:3  
研究了脉冲偏压对真空电弧沉积TiN薄膜组织与性能的影响.结果表明脉冲偏压幅值在500-1700V,脉宽比在1/25~2/5的范围内,沉积温度低于250℃时膜层组织主要由Ti2N和TiN相构成,随脉冲偏压幅值和脉宽比的增大,晶面的择尤沉积由Ti2N(200)向(002)转变,柱状晶生长程度减弱.膜层具有较高的显微硬度和耐磨性,但在过高的脉冲偏压和脉宽比的沉积条件下,膜层的性能有下降的趋势.  相似文献   

12.
目的探究过渡层沉积时间和结构对类石墨镀层结合强度的影响规律。方法采用微弧离子镀技术,改变梯度层沉积时间,制备不同的类石墨镀层。利用扫描电子显微镜(SEM)分析镀层的微观形貌,利用截面能谱扫描分析镀层中梯度层结构变化。采用压痕法和划痕法对镀层与基体的结合强度进行评价。采用维氏硬度计测试镀层的显微硬度,并利用针盘式摩擦磨损试验机测定镀层的摩擦系数。结果随着梯度层沉积时间的延长,镀层与基体的结合强度呈先上升、后下降的变化趋势,在过渡层沉积时间为20 min时,结合强度最高,约为46 N。此外,随着过渡层沉积时间的延长,镀层摩擦系数逐渐下降,但显微硬度下降,承载能力减弱,摩擦磨损寿命下降。结论合理调控过渡层沉积时间有助于类石墨镀层结合强度的提升,镀层的摩擦磨损寿命随着过渡层时间的延长而呈现先上升、后下降的趋势,高结合强度使得膜基界面的结合寿命延长。  相似文献   

13.
目的改善TiCN薄膜的组织结构,进一步提高其硬度与结合力。方法采用电弧离子镀技术,通过改变脉冲偏压的幅值,制备一系列的TiCN薄膜。通过扫描电子显微镜(SEM)观察薄膜的表面和截面形貌,采用X射线衍射(XRD)对薄膜进行物相分析,用X射线光电子谱(XPS)表征元素的化学状态,通过能谱仪(EDS)分析薄膜的成分。采用显微维氏硬度计测量薄膜硬度,使用3D轮廓仪测量薄膜厚度,利用多功能材料表面性能试验仪进行划痕测试。结果偏压对薄膜的硬度、结合力、组织结构和沉积速度都有影响。随着脉冲偏压的提高,TiCN薄膜晶粒逐渐细化,沉积速率、结合力有先增大后减小的趋势,TiCN薄膜的硬度保持线性提高。偏压为-200 V时,TiCN薄膜出现C_3N_4新相,此时薄膜的硬度和结合力都大幅度提高,表面形貌发生突变,液滴最多。偏压为-250 V时,TiCN薄膜综合性能最好,并且表面的液滴明显减少,此时硬度值为4017HV,结合力为51 N。结论偏压对组织结构及碳元素在薄膜中的存在形式有一定影响,适当地改变脉冲偏压可以使TiCN薄膜的显微组织更加致密,同时,形成的弥散硬化相使薄膜具备较高的硬度和膜基结合强度。  相似文献   

14.
为了研究深冷处理后GLC多层薄膜界面结构及结合强度的变化,采用非平衡直流磁控溅射技术,在W9高速钢上沉积了含GLC功能层、Cr/C梯度层及Cr底层的类石墨碳多层薄膜,厚度约为4μm。采用液氮(-197℃)对GLC/高速钢复合体系进行深冷处理,借助XPS、SEM及TEM表征了GLC薄膜的表面、断面结构及界面微观组织;采用洛氏硬度仪定性考察了薄膜的膜基结合强度。结果表明:复合体系经深冷处理后除基体的硬度及承载能力得以提高外,多层膜各层及基体中裂纹的萌生及传播受到抑制,界面结合强度明显增强。其作用机理在于深冷处理后,Cr底层的柱状晶结构被"打破",纤维状结构消除,组织更加致密均匀;同时,Cr/C梯度层中Cr晶粒碎化平均尺寸由20 nm减小为5 nm,达到细晶强化效果。因此,膜基及层间界面结构得以改善,界面失配减小,基体及多层膜各层间的变形协调性能增强。  相似文献   

15.
为提高磁控溅射制备薄膜的致密度,减少结构缺陷,研究薄膜显微结构对硬度、韧性及耐蚀性能的影响,尝试在改变离子源和基材偏压的条件下,采用离子源辅助HiPMIS技术在304不锈钢和P型(100)晶向硅片上制备TiN纳米薄膜。采用扫描电子显微镜、小角X射线衍射仪对薄膜的形貌和晶体结构进行分析;采用纳米压痕仪和维氏硬度计分别测量计算薄膜的硬度和韧性,并通过电化学工作站对薄膜的耐蚀性能进行检测。结果表明:随着偏压的增加以及离子源的引入,离子的轰击效应增强,薄膜的沉积速率下降,致密度增加。偏压为-200 V时,薄膜的硬度达到最大值16.2 GPa,且对应的晶粒尺寸最小,(111)晶面衍射峰的强度最高。离子源的加入使所制备薄膜的硬度略有下降。此外,随着偏压的增加,薄膜的韧性和耐腐蚀性能也有一定提高。  相似文献   

16.
本文利用PVD技术在不同偏压下制备了一系列Ni3Al薄膜,通过XPS、XRD、SEM、AFM、纳米压痕仪以及显微硬度计等详细研究了偏压对于Ni3Al薄膜组分、沉积率、微观结构、硬度和断裂韧性的影响。结果表明:施加偏压可以增大溅射过程中被离化部分带电离子的动能,从而显著提高Ni3Al薄膜的沉积率、内部结构的致密性以及表面平整性;此外,适当偏压的引入可以诱导生成非晶包裹纳米晶的纳米复合结构,这种包裹态的双相纳米复合结构提供了大量晶界,增强了对位错的阻碍作用,位错堆积在晶界处无法继续运动从而导致硬度的增加。同时,大量存在的晶界可以消耗裂纹传播的能量、抑制宏观裂纹的产生,从而显著增强Ni3Al薄膜的断裂韧性。  相似文献   

17.
利用扫描电子显微镜、原子力显微镜等手段研究负偏压对多弧离子镀制备的(Ti,Cr)N薄膜表面缺陷、表面粗糙度、化学成分、沉积速率及硬度的影响。结果发现:随着负偏压的增加,(Ti,Cr)N薄膜的液滴受到抑制,表面粗糙度下降,沉积速率降低,硬度增加,但负偏压对薄膜的Cr含量影响较小。  相似文献   

18.
针对利用笼形空心阴极放电在大工件表面制备DLC薄膜时,笼网内大工件操作困难、大工件影响放电的问题,开发了自源笼形空心阴极放电方法,在不同偏压(-300~0 V)条件下于Si (100)表面制备了Si-DLC薄膜,考察了偏压对Si-DLC薄膜结构和性能的影响。结果表明:获得Si-DLC的沉积速率达到7.90 μm/h。由偏压引起的高能离子轰击使薄膜的组织结构更为致密,降低了表面粗糙度和H含量。Si-DLC薄膜中的sp3/sp2值随偏压增加先上升后下降,薄膜纳米压入硬度和弹性模量也呈现相同规律。偏压为-200 V沉积的Si-DLC薄膜具有最高的sp3/sp2(0.69)、H/EH3/E2值,表现出致密的结构和优异的摩擦性能,摩擦因数低至0.024,磨损率为1×10-6 mm3/Nm。说明自源笼形空心阴极放电是一种有效制备大面积DLC膜的工艺,-200 V偏压是最优化的参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号