首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
考察磁头与磁盘间隙下降到10nm以下时,磁盘表面粗糙度对气膜润滑性能的影响。采用余弦粗糙度代替实际磁盘表面粗糙度分布。通过改变粗糙度的波长、幅值等特征参数来分析对纳米气膜润滑性能的影响。分析结果表明在纳米级间隙下,磁盘表面粗糙度对气膜压力分布产生明显作用,特别是在气膜较小区域这种波动更加明显,但是随着粗糙度波数的增加压力波动趋于平稳。气膜厚度是决定压力大小的重要因素,在一定粗糙度工况下,随着气膜厚度的增大,粗糙度的影响逐渐减小。  相似文献   

2.
求解磁头/磁盘超薄气膜润滑性能的有效有限差分算法   总被引:5,自引:0,他引:5  
首先给出超薄气膜润滑的基本方程.通过对方程的分析指出,在纳米尺度下工作的磁头/磁盘具有轴承数很大和剪切流项含有压力的两个特点.提出对剪切流项进行主元迭代求解可压缩气体雷诺方程的新计算方法.在推导出该方法所用的差分公式和误差分析公式基础上,利用这些公式对双轨和多轨两种磁头在5 nm和10 nm下工作压力分布进行计算.计算过程表明该方法对超薄条件下的气膜润滑计算是有效的,该方法能够有效解决大轴承数条件下容易出现失稳的现象,避免计算中数值振荡的发生,成功地将普通有限差分算法用于求解大轴承数的气体润滑数值计算中.计算结果的误差分析表明:该算法对大轴承数气体润滑问题的收敛十分有效,并具有编程简单、计算速度快等优点.  相似文献   

3.
考虑安装误差引起的磁头俯仰角误差和侧翻角误差,建立了磁头飞行数学模型,通过数值方法分析了安装误差对纳米间隙磁头飞行姿态主要参数的影响,并与试验结果进行了对比分析。结果表明,俯仰角误差对飞行高度和俯仰角有明显影响,随着俯仰角安装误差的增加,磁头飞高和俯仰角偏差增加,对侧翻角的影响可以忽略。侧翻角误差只对侧翻角有明显影响,随着侧翻角安装误差的增加,磁头飞行侧翻角偏差增加,对磁头飞行高度和俯仰角的影响可以忽略,理论分析和实验结果吻合较好。磁头设计和装配时,应控制磁头的俯仰角安装误差。  相似文献   

4.
磁头/磁盘超薄气膜润滑动特性计算与分析   总被引:3,自引:0,他引:3  
给出了一种新的计算超薄磁头/磁盘气体润滑压力的差分算法和公式,指出了磁头偏离平衡位置的3种方式,并对超薄磁头/磁盘气体润滑问题中的动特性参数进行了计算。计算结果表明:磁头气体动压正翻刚度是影响磁头稳定的重要因素,它会使磁头越来越偏离平衡位置。  相似文献   

5.
不同微细造型几何形貌对润滑性能影响的数值模拟   总被引:4,自引:0,他引:4  
建立了圆柱形、球冠形、锥形、六角形截面、三角形截面、正方形截面等表面微细造型几何形貌的数学模型,结合微细形貌润滑理论模型,采用多重网格法,分析了这些不同几何形貌对两滑动表面摩擦润滑性能的影响。分析结果表明:球冠造型形成油压的区域要明显大于圆柱和圆锥造型形成的油压区域;在相同表面占有率和微细造型深度下,正三角形造型有效油膜压力的区域较大,在相对滑动的表面中形成的间隙大,摩擦因数小。  相似文献   

6.
表面形貌对内燃机主轴承润滑性能的影响   总被引:1,自引:0,他引:1  
李涵 《润滑与密封》2018,43(6):49-54
基于Patir和Cheng的平均流量方程和流量因子,计入表面形貌和弹性变形等因素,以流体润滑理论为基础,建立内燃机主轴承的润滑分析计算模型;研究主轴颈和轴瓦表面形貌对主轴承最小油膜厚度、最大油膜压力、摩擦损失总功和粗糙接触压力等润滑特性的影响。结果表明,轴颈和轴瓦表面粗糙度值大小和纹理方向对主轴承润滑性能具有显著影响,随着粗糙度值的增加,最小油膜厚度增加,油膜压力减小,粗糙接触压力增加,摩擦损失总功增大;相较横向纹理和各向同性,纵向纹理有利于提高最小油膜厚度,降低粗糙接触压力和摩擦损失总功;当粗糙度值不变时,随着内燃机转速和爆发压力的增加,粗糙接触压力增加,粗糙摩擦损失功率增加,导致磨损加剧效率降低。  相似文献   

7.
根据热力学理论,建立了硬盘磁头热力学分析模型,利用数值方法分析了绝热过程中热效应及热蠕流效应对磁头承载能力、飞行姿态等性能的影响,并与实验结果进行了对比分析。数值分析结果表明,绝热过程中热蠕流效应对磁头的压力分布和承载力没有明显影响,但热效应对气体黏度和磁头飞行姿态影响明显。热效应使气体黏度和承载能力增加,从而使磁头飞行高度和俯仰角增大,但对侧翻角没有明显影响。理论分析与实验结果的对比分析表明,磁头的飞行过程不是绝热过程。  相似文献   

8.
为研究在流体润滑条件下,表面微织构形貌参数对润滑性能的影响,建立考虑空化效应的单织构三维计算模型。用CFD方法模拟织构在不同深度、面积密度和表面形状条件下,油膜承载力、摩擦因数和压力分布的变化情况。结果表明:随着织构深度(面积密度)的增加,油膜的承载力先增大后减小,摩擦因数先减小后增大,即织构存在最优的深度和面积密度使得流体动压润滑性能最优;随着上壁面滑移速度的增大,织构的最优深度有减小的趋势,而最优面积密度趋于稳定;设计具有汇流作用的织构表面形状可以提高油膜的承载力,且速度越大,改善润滑的效果越明显。  相似文献   

9.
磁头与磁盘的特征高度目前已经下降到纳米量级,在此微小间隙下,气体表现出明显的稀薄效应特征。建立适用于纳米间隙下的控制方程,并根据方程特点采用特殊处理方法成功对控制方程进行数值求解,采用数值分析和实验方法分析表面结构变化对稀薄流域和磁头飞行姿态的影响。研究结果表明:在纳米级气膜润滑间隙下,采用逆 Knud-sen 数来划分稀薄流域比仅从特征膜厚高度方面考虑更合理;负压型磁头的主要工作区间在滑流区和过渡区,且过渡流域所占比例要明显高于滑流区域。稀薄效应最大的区域不是在气膜厚度最薄的磁头尾部,而是在压力突然下降且气膜较薄的阶梯过渡区域;磁头 U 型气垫、尾端两侧浅台阶和中间台阶结构变化会影响气流流向,从而影响压力分布,使得稀薄流域也跟随发生变化。  相似文献   

10.
计算机磁头/磁盘超薄气膜润滑稳定性   总被引:3,自引:0,他引:3  
以任意拉森数的超薄气体润滑方程为基础,给出磁头刚体小扰动对空气轴承滑块 (ABS)气膜压强摄动方程。采用算子分裂法求解气膜压强和非结构三角网格的有限元法解压强摄动方程,得到气膜的刚度系数和阻尼系数矩阵。模态分析得到磁头气固耦合系统的固有频率,衰减率和振型。以Ω型磁头为例,分析了在不同气膜厚度和磁盘转速下的磁头稳定性。研究结果表明,磁头稳定性对气膜厚度很敏感,在小气膜厚度运行时,系统固有频率高,稳定性好;磁头升沉和纵倾运动的动力耦合,使磁头系统固有频率和衰减率降低,对稳定性不利;高转速的磁盘对磁头稳定性不利,但影响不大。  相似文献   

11.
硬盘磁头超薄气膜润滑研究进展   总被引:1,自引:0,他引:1  
介绍硬盘磁头发展状况以及超薄气膜润滑理论的研究现状,提出超薄气膜润滑研究中存在的问题,如10nm以下一毪行间隙的润滑理论模型、超薄气膜润滑有效的数值计算方法,以及建立飞行高度试验台和开发磁头气体轴承设计分析软件模块等问题,并介绍一种新型有效的计算磁失磁盘超薄气膜的数值计算方法。  相似文献   

12.
基于三维间隙函数,利用有限差分法对轴承在偏斜状态下的润滑进行了数值研究,并以机床用对开式径向滑动轴承为例,计算出偏斜状态下的油膜压力分布。计算结果表明,随着倾斜角度的增大,油膜厚度h的变化受轴向尺寸y的影响程度逐渐增大,且轴承前端的压力峰值逐渐降低,并向轴承后端移动;油膜压力的峰值点沿轴向逐渐向θ=0(θ=2π)靠近。  相似文献   

13.
三波长光干涉法测量磁盘/磁头纳米级气膜厚度   总被引:1,自引:1,他引:0  
给出三波长光干涉测量纳米级薄膜厚度的方法。通过对某负压磁头/玻璃盘空气薄膜的测试表明:三波长光干涉法具有精度高、容易实施等优点,能够满足磁盘/磁头润滑副设计、制造及研究的需要。  相似文献   

14.
考虑轴承表面海水润滑膜温度场和轴承表面横向粗糙度等因素,对塑料轴承的弹流润滑问题进行了研究。利用压力求解的多重网格法和弹性变形求解的多重网格积分法以及温度求解的逐列扫描技术,得到塑料轴承微观热弹流润滑问题的完全数值解,讨论了连续波状粗糙度、载荷、轴承转速对海水润滑膜压力及膜厚的影响。数值计算结果表明:轴承表面粗糙度对润滑膜压力和膜厚分布都有一定影响,连续波状粗糙度使润滑膜压力和膜厚分布产生振荡;转速和载荷对压力分布影响较小,随转速的增大、载荷的减小,膜厚都有明显的增大。  相似文献   

15.
针对高速动静压气体轴承气膜的复杂非线性动力学行为,以球面螺旋槽动静压气体轴承为研究对象,建立润滑分析数学模型;采用有限差分法与导数积分法进行求解,得到动态扰动压力分布及动态特性系数,并研究切向供气条件下螺旋槽参数、径向偏心率、供气压力、转速对气膜刚度阻尼系数的影响规律;建立线性稳定性计算模型,预测气膜涡动失稳转速,分析运行参数对失稳转速的影响。结果表明:气膜阻尼是一种抑制涡动的因素,气膜的稳定性取决于气膜刚度与阻尼的协同作用;气膜刚度阻尼随着槽宽比、槽深比、螺旋角的增大,整体上呈先增大后减小的趋势;刚度随转速的升高而增大,阻尼则随转速的升高而减小;径向偏心率和供气压力越大,气膜刚度和阻尼越大;在一定范围内,提高供气压力、增大径向偏心率能够提高系统失稳转速;合理地选取轴承结构参数和运行参数,能够优化轴承动态特性,保证气体轴承较高的运行稳定性。  相似文献   

16.
17.
曲庆文 《润滑与密封》2005,(4):44-46,49
根据润滑剂在微间隙下的特性,综合考虑壁面吸附层效应和润滑剂剪切稀化特性,得到简化的综合修正粘度计算模型,并运用此结果进行了薄膜润滑轴承的性能分析,得到各参数与轴承润滑性能的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号