首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以葡萄糖为碳源,采用碳热还原法制得一系列LiFePO4/C材料,其中葡萄糖的添加量分别为10,,15,,20,,25,和30,.通过XRD,SEM和恒流充放电等测试方法,研究了葡萄糖添加量对LiFePO4/C材料结构和电化学性能的影响.结果表明:当葡萄糖添加量为20,时,LiFePO4/C材料以0.2C充放电,放电比容量为140.6mA· h/g;1 C倍率50次循环后,容量保持率达到97,;以0.2C充电,在0.2C,1C,2C,5C和10 C不同倍率下放电,其中10 C倍率放电比容量为89.1mA· h/g,合成材料表现出良好的综合电化学性能.经XRD和SEM测试发现,制得的材料均为橄榄石型结构,不同碳含量对材料的颗粒尺寸有一定的影响.  相似文献   

2.
采用液相共沉淀的方法制得前驱体,然后通过热处理得到LiFePO4/C。运用XRD和SEM研究反应时间和碳源对合成产物的晶体结构和表面形貌的影响。实验结果表明,反应时间和碳源对产物的性能有影响,60℃沉降60 min得到的样品以0.1 C充放电,首次放电比容量为149.4 mAh/g。  相似文献   

3.
以葡萄糖作为碳源,采用固-液结合法合成了LiFePO4/C材料,用X射线衍射仪、扫描电镜和电化学测试仪对其结构和电化学性能进行了研究.结果表明,加入葡萄糖可得到粒径细小、均匀的LiFePO4/C材料;当添加葡萄糖质量分数为9%时,合成的LiFePO4/C材料被碳膜均匀包覆,具有良好的物理形貌和电化学性能,0.2C恒流放电比容量为143.6 mAh/g,循环30周后放电比容量保持率为94.8%.  相似文献   

4.
用流变相法制备了 LiFePO4/C电池正极材料,利用XRD、SEM和EDS等技术对产物的微观结构和形貌进行了分析,并采用恒流克放电、循环伏安(CV)等测试技术测试了其电化学性能.重点探讨了不同碳量对LiFePO4正极材料晶体结构、形貌和电化学性能的影响.结果表明.制得的复合材料环境友好,具有平稳的3.4 V左右的充放电电压平台,导电性能和大电流充放电性能优良.  相似文献   

5.
利用高温固相法制备Li1-xNaxFePO4(x=0,0.05,0.10,0.20)正极材料,并进行电化学性能测试。结果表明,Li0.95Na0.05FePO4材料表现出最好的电化学性能,在0.1C充放电时首次放电容量为107.6mA·h/g,循环20次后的放电容量为109.3mA·h/g,容量保留率几乎100%。在0.5C、1.0C和2.0C不同倍率下放电,容量保持率分别为80.22%、97.36%和91.90%。与纯LiFePO4相比,Li0.95Na0.05FePO4材料具有更高的可逆容量、更稳定的循环性能和更好的倍率性能。  相似文献   

6.
以H3PO4,FeSO4·7H2O和LiOH·H2O为原料,采用水热法制备锂离子电池正极材料LiFePO4,并以葡萄糖为碳源对其进行碳包覆.考查了pH值、水热反应温度和反应时间等工艺条件对合成产物的结构、微观形貌和电化学性能的影响.结果表明,pH值对水热反应合成LiFePO4有很大的影响,当前驱体pH值为7左右时能得到较纯的LiFePO4.260℃水热反应4 h所合成的LiFePO4碳包覆后的电性能最好,0.1C倍率下首次充放电比容量分别为152和146 mAh/g.  相似文献   

7.
LiFePO4的共沉淀法制备与性能   总被引:2,自引:0,他引:2  
以LiOH·H2O,H3PO4,(NH4)2Fe(SO4)2·6H2O为原料,采用低温共沉淀结合后续热处理法制备了橄榄石型的锂离子电池正极材料LiFePO4.X射线衍射结果表明,所得产物为纯相橄榄石型LiFePO4.研究了锂用量、料液浓度、反应温度、反应时间、热处理温度、热处理时间等因素对所得产物电化学性能的影响,得到的优化实验条件为锂用量为理论量的2.9倍,料液浓度为0.1 mol/L,反应温度为60 ℃,反应时间为60 min,热处理温度为700 ℃,热处理时间为10 h.  相似文献   

8.
Lithium iron phosphate is a most promising cathode material for Li-ion batteries(LIB).But the key barrier limiting its application is extremely low electronic conductivity. Meanwhile the low electron conductivity can be improved by preparing LiFePO4 with carbon modified. LiFePO4/C was synthesized by high temperature solid-state reaction using iron (Ⅱ) oxalate, ammonium di-hydrogen phosphate and lithium carbonate with a kind of organic compound (CR) that can be dissolved in the dispersant (ethanol) as carbon sources added to the synthetic precursor in this paper.The samples were characterized by X-ray diffraction, scanning electron microscope observations,charge/discharge test, cyclic voltammetry and carbon analysis. It was believed that the synthesized LiFePO4/C with perfect olivine structure by X-ray diffraction. The carbon brought about two advantages: (i) an optimized particle size of LiFePO4, and (ii) increasing the electronic conductivity and Li+ diffusivity. The cathode material could demonstrate a charge/discharge flat voltage of 3.4V (Vs Li+/Li). Especially the active material with 20, organic added according to the final product of LiFePO4 showed very good electrochemical performance reaching about initial 162.0 mAh/g specific capacity at 0. 1C rate and could also keep excellent discharge capacity even at 3C rate (510 mA/g) current and good cycle performance. The carbon content in the final production was only 5.29,(mass fraction).  相似文献   

9.
采用高温固相法合成了LiFePO4/C和Al、Mg共掺杂的LiFe0.95Al0.03Mg0.02PO4/C复合材料。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、能量仪(EDS)、恒流充放电测试、循环伏安法(CV)等手段对材料的结构、形貌及电化学性能进行了表征。XRD结果表明,Al、Mg共掺杂后的样品并没有破坏LiFePO4的橄榄石结构,同时还增强了LiFePO4结构的稳定性、提高了电子导电性和Li+扩散速度;通过SEM和EDS观测到LiFePO4呈球形颗粒,并在复合样品中检测到有Al和Mg元素存在。分别以0.5C、1C、3C和5C倍率充放电,LiFe0.95Al0.03Mg0.02PO4/C的放电比容量分别为145.1、142.6、133.2和124.9 mAh/g;1C倍率下循环30次后仍保持99.2%的初始容量,显示出良好的循环寿命。  相似文献   

10.
通过控制反应沉淀-柠檬酸盐凝胶法,经还原热处理制得LiFePO4/Ni复合微球材料,并采用扫描电子显微镜、能谱分析、X射线衍射等手段研究了前驱体和焙烧产物的成分、微观结构及形貌.结果表明:实验制备的LiFePO4/Ni复合材料由LiFePO4和金属Ni两相组成,且保持了球形形貌、具有相对致密的结构,金属镍均匀分布于LiFePO4微球表面.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号