首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, a new hybrid dc–dc converter with low circulating current within the freewheeling interval, wide range of zero‐voltage switching and reduced output current ripple is presented. The proposed hybrid circuit includes two three‐level pulse‐width modulation converters and a series resonant converter with the shard lagging‐leg switches. Series resonant converter is operated at fixed switching frequency (close to series resonant frequency) to extend the zero‐voltage switching range of lagging‐leg switches. The output of series resonant converter is connected to the secondary sides of three‐level converters to produce a positive rectified voltage instead of zero voltage. Hence, the output inductances can be reduced. The reflected positive voltage is used to decrease the circulating current to zero during the freewheeling interval. Therefore, the circulating current losses in three‐level converters are improved. Finally, experiments are presented for a 1.44 kW prototype circuit converting 800 V input to an output voltage 24 V/60A. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, a new interleaved non‐isolated bidirectional dc–dc converter with capability of zero voltage switching and high voltage gain is proposed. In the proposed converter by using two coupled inductors and one capacitor, the voltage gain is extended. Moreover, by using only an auxiliary circuit that includes an inductor and two capacitors, the zero voltage switching (ZVS) of two used switches in the first phase of converter can be achieved. The ZVS operation of two used switches in the second phase is always obtained without using any extra auxiliary circuit. This converter similar to other interleaved converters has low input current ripple and low current stress on switches. In this paper, the proposed converter is analyzed in all operating modes, and also the voltage gain, required conditions for ZVS operation of switches, voltage and current stresses of all switches, and the value of input current ripple in both boost and buck operations are obtained. Finally, the accuracy performance of the proposed converter is verified through simulation results in EMTDC/PSCAD software. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
The study of multi‐state dc–dc power conversion techniques is restricted by the complicated inner switching behaviors. This paper presents a general and unified transient analysis for various sorts of multi‐state dc–dc converters from a viewpoint of their system energy characteristics. With the applications to the boost converters, the proposed analytical method has indicated its advantages of high convenience and practicability to the multi‐state converters. The generalized concepts of system energy parameters of dc–dc converters are introduced and applied to the transient analysis. Consequently, the expressions of system model parameters of multi‐state dc–dc converters are deduced. The new 2nd order transfer functions are obtained to describe the large‐ and small‐signal mathematical models accurately. The model simulation and experimental results are provided to support the theoretical analysis. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
We propose a method of estimating the fast‐scale stability margin of dc–dc converters based on Filippov's theory—originally developed for mechanical systems with impacts and stick‐slip motion. In this method one calculates the state transition matrix over a complete clock cycle, and the eigenvalues of this matrix indicate the stability margin. Important components of this matrix are the state transition matrices across the switching events, called saltation matrices. We applied this method to estimate the stability margins of a few commonly used converter and control schemes. Finally, we show that the form of the saltation matrix suggests new control strategies to increase the stability margin, which we experimentally demonstrate using a voltage‐mode‐controlled buck converter. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we have proposed Single‐Inductor Dual‐Output (SIDO) buck–buck and boost–boost dc–dc converter using improved RC ripple regulator control. The proposed SIDO buck–buck converter has the characteristics of low‐ripple and high control frequency. RC ripple regulator control cannot be applied to SIDO boost–boost converter because RC ripple regulator undergoes self‐excited oscillation and two self‐excited oscillating controllers make the SIDO converter unstable. Thus we proposed the priority circuit for RC ripple regulator control. The proposed control circuit improves response characteristic and simplicity of the control circuit. Simulations are performed to verify the validity of the proposed SIDO converter. Simulation results indicate good performance of the proposed SIDO converter.  相似文献   

6.
In this paper, a new multiport zero voltage switching dc‐dc converter is proposed. Multiport dc‐dc converters are widely applicable in hybrid energy generating systems to provide substantial power to sensitive loads. The proposed topology can operate in 3 operational modes of boost, buck, and buck‐boost. Moreover, it has zero voltage switching operation for all switches and has the ability to eliminate the input current ripple; also, at low voltage side, the input sources can be extended. In addition, it has the ability of interfacing 3 different voltages only by using 3 switches. In this paper, the proposed topology is analyzed theoretically for all operating modes; besides, the voltage and current equations of all components are calculated. Furthermore, the required soft switching and zero input currents ripple conditions are analyzed. Finally, to demonstrate the accurate performance of the proposed converter, the Power System Computer Aided Design(PSCAD)/Electro Magnetic Transient Design and Control(EMTDC) simulation and experimental results are extracted and presented.  相似文献   

7.
This paper studies the various paralleling styles for dc–dc switching converters from a circuit theoretic viewpoint. The study begins with a systematic classification of the types of parallel‐connected dc–dc converters. In the classification, converters are modeled as current sources or voltage sources. From Kirchhoff's laws, the possible connection styles for paralleling current sources and voltage sources are derived, leading to the identification of three types of configurations for paralleling dc–dc converters. Then, control arrangements are classified according to the presence of current‐sharing and voltage‐regulation loops. Moreover, detailed operating principles with and without a current‐sharing loop for the three basic paralleling connections to obtain both current sharing and voltage regulation are given. Applying small‐signal analysis to the practical circuits, the inherent characteristics of each scheme are expounded. The roles of the current‐sharing loop and origins of current‐sharing errors are highlighted. Characteristics for all the schemes are obtained in terms of their performances in current sharing and voltage regulation. Finally, an experiment prototype is built to validate the analysis. The results clearly show the properties of the various paralleling schemes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a parallel zero‐voltage switching (ZVS) DC–DC converter with series‐connected transformers. In order to increase output power, two transformers connected in series are used in the proposed converter. Two buck‐type converters connected in parallel have the same switching devices. The primary windings of series‐connected transformers can achieve the balanced secondary winding currents. The current doubler rectifiers with ripple current cancellation are connected in parallel at the output side to reduce the current stress of the secondary winding. Thus, the current ripple on the output capacitor is reduced, and the size of the output choke and output capacitor are reduced. Only two switches are used in the proposed circuit instead of four switches in the conventional parallel ZVS converter to achieve ZVS and output current sharing. Therefore, the proposed converter has less power switches. The ZVS turn‐on is implemented during the commutation stage of two complementary switches such that the switching losses and thermal stresses on the semiconductors are reduced. Experimental results for a 528‐W (48 V/11 A) prototype are presented to prove the theoretical analysis and circuit performance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
One of the main advantages of digital control is the ability to design more sophisticated control strategies to enable high‐performance dc–dc converters. One such example is a buck converter operating with a digital state‐feedback controller. Previous works characterise the nonlinear dynamics of such systems under ideal operating conditions. However, in practical applications, these conditions cannot be guaranteed. The focus of this work is on the behaviour of such systems when they operate in the presence of strong interference signals. Previous works on the effect of noise have shown that intermittent operation is possible when the frequency of the noise signal is close to the switching frequency. Intermittent operation can be characterised by long periods of stable operation interspersed with periods of unstable or chaotic operation, which greatly downgrade the efficiency and performance of the converter and reduce its lifetime as for example increase the current ripple or add extra AC components at its output. Typically, such behaviour is avoided by modifying the circuit parameters. However, little or no work exists on developing design guidelines in order to effect its elimination. This is the focus of this research, that is, by utilising Filippov's theory on discontinuous differential equations, to set out a design procedure that can be applied to any dc–dc converter, to tune its controller in order to eliminate intermittent operation. As a case study, the digitally controlled buck converter with a state‐feedback control law is selected. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
A new shunt current shaping scheme for multiple paralleled dc–dc converters is proposed in this paper. The current command for the shunt current shaper is indirectly obtained by forcing the source current to follow the demanded sinusoidal signal. The amplitude of the demanded sinusoidal source current that is in‐phase with the source voltage can be determined from the sensed load currents of the post‐stage dc–dc converters. Neither high‐order filters nor time‐consuming computations are required. The shunt current shaper supplies all the harmonics and the out‐of‐phase fundamental of the distorted input current and the power source only supplies the in‐phase fundamental component. Experimental results on a prototype system verify the feasibility of the presented scheme. The implemented shunt current shaper demonstrates an efficiency of 92% and a nearly unity power factor at the utility side. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A methodology for realizing a higher‐power‐density DC‐DC converter has been proposed for a power unit installed in a 380‐V DC distribution system. The possibility of the converter design will be strengthened by using the series–parallel connection topology for isolated DC‐DC converters. A converter prototype with a power density of 10 W/cm3 has been fabricated, and the feasibility of the converter design has been confirmed experimentally. This result contributes to the realization of a highly efficient and highly space‐saving 380‐V DC distribution system. © 2013 Wiley Periodicals, Inc. Electr Eng Jpn, 186(3): 51–62, 2014; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.22494  相似文献   

12.
Conventionally, a high accuracy operational amplifier (OPA)‐based current sensor is used for sensing current message under a full load range, which increases the cost characteristic. Instead of a high accuracy OPA‐based current sensor, this paper describes using a switching inductor quasi‐V2 hysteretic control boost dc–dc regulator with a proposed current‐sensing technique named emulated‐ramp feedback (ERF), which can improve transfer efficiency under a full load range. Two control systems are presented in this paper. The first system, a hysteretic voltage control switching boost converter with ERF, achieves the hysteretic voltage control in a boost regulator and lowers the cost characteristic without using compensator. The second system, a quasi‐V2 hysteretic voltage control switching boost converter with ERF, demonstrates the compatibility of ERF technique in rippled‐based control boost converters. The regulator was implemented with TSMC 0.25‐µm HV CMOS process. Experimental results show the second system can work under the specification of 5–12 V with a 0 to 300‐mA load range. Additionally, this system attained a recovery time is 27/95 µs for step‐up/step‐down in a 100 to 300‐mA continuous conduction mode load current, and a peak efficiency of 92.1% with a chip area of only 1.014 mm2. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This paper studies the sliding mode control (SMC) and terminal SMC (TSMC) techniques of output voltage regulation in dc–dc buck converters. In this paper, the conventional terminal sliding manifold (TSM), fast terminal sliding manifold, and adaptive terminal sliding manifold are investigated by using hysteresis‐modulated control. In addition, proportional‐integral‐derivative‐shaped TSM, PI‐shaped TSM, and proportional‐integral‐derivative‐integral‐shaped TSM are proposed in order to overcome the problems of conventional TSMs. Furthermore, a new continuous controller based on control Lyapunov function (CLF), with pre‐settable‐fixed switching frequency, is suggested. CLF‐based controller (CLF‐bC) is also adapted to the discontinuous digital input of the buck converter. In the proposed CLF‐bC, the switching frequency is completely independent and pre‐settable. Stabilization, reference tracking, high performance dynamic response, robustness against parameter uncertainties, and rejection of disturbances (e.g., input voltage changes and load variations) are some advantages of the proposed controllers. Impact of the controllers' parameters on the performance of the system is also summarized. Finite‐time stability of TSMs and proposed CLF‐bC, and the robustness of CLF‐bC against parameter variations and disturbances are mathematically proved. Performance of the proposed Adaptive TSMC (ATSMC), proportional‐integral‐derivative‐TSMC, and CLF‐bC has been verified through matlab simulations and compared with the conventional SMC and TSMC strategies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
15.
This paper is an extension of the author's recent research in which only buck converters were analyzed. Similar analysis can be equally applied to other types of converters. In this paper, a unified model is proposed for buck, boost, and buck–boost converters under peak or average current mode control to predict the occurrence of subharmonic oscillation. Based on the unified model, the associated stability conditions are derived in closed forms. The same stability condition can be applied to buck, boost, and buck–boost converters. Based on the closed‐form conditions, the effects of various converter parameters including the compensator poles and zeros on the stability can be clearly seen, and these parameters can be consolidated into a few ones. High‐order compensators such as type‐II and PI compensators are considered. Some new plots are also proposed for design purpose to avoid the instability. The instability is found to be associated with large crossover frequency. A conservative stability condition, agreed with the past research, is derived. The effect of the voltage loop ripple on the instability is also analyzed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The harmonic pollution caused by ac-to-dc converters has been of great concern. To overcome this problem, several power-factor-correction (PFC) converters have been developed and applied in recent years. However, several power converter systems, such as the motor drive system, with a wide V/F control range, uninterruptible power supply system and dc power supply system with universal input voltage range, require an ac-to-dc converter or an off-line converter (preregulator) with a wide output-voltage control range in order to be highly efficient. However, the most conventional PFC converters employ a voltage-fed or current-fed type topology and they have a lower or upper limitation of the output-voltage control range. Thus, they do not realize sufficiently high-system efficiency. On the other hand, a buck/boost converter has a wide control range of the output voltage and acts in PFC operation under an appropriate control technique. Thus, study of the possibility of using the buck/boost ac-to-dc converter with PFC and a wide output-voltage control range is important to the realization of harmonic-free and efficient power conversion systems. In this paper, the author proposes a three-phase bridge-type ac-to-dc converter system with a high input power factor and a wide output-voltage control range. The controller of the proposed system includes the following two new techniques. One is the pulse integral value modulation that compensates modulation errors in conventional pulse-width-modulation caused by dc current ripples or fluctuations of the current pulse amplitude. The other is a switching pulse pattern generator, using the idea of equivalent pulse current source for the bridge as a way to simplify the pulse pattern generation process. This paper describes the proposed converter system, the control and modulation principles, and experimental results that show the reliability and usefulness of the proposed buck/boost converter system. © 1997 Scripta Technica, Inc. Electr Eng Jpn, 118 (2): 41–55, 1997  相似文献   

17.
PWM controlled rectifiers can efficiently and economically be employed in low and medium power applications of dc drives and in front-end converters of rectifier–inverter systems while maintaining the advantages of design simplicity and operation reliability of naturally commutated schemes. Due to the high dc voltage that is produced which is greater than the peak voltage of the utility supply, the ac–dc buck-boost converter is especially suited as a front-end power source in variable-speed drive systems to convert the utility supply voltage into a variable dc link voltage where a single-phase or a three-phase utilities power supply is available. In this paper, the dynamic model and steady state equivalent circuit of a single-phase ac–dc buck-boost converter fed dc motor with uniform PWM control is presented. The waveforms of voltage and current, the input and output characteristics of the converter are discussed and verified. Measured, computed and simulated results are shown to be very close and the model is proved to be efficient and accurate.  相似文献   

18.
We developed an interleaved dc/dc converter with SiC devices. We applied full‐SiC modules including MOSFETs and SBDs to the interleaved dc/dc converter to achieve a high‐power density. An SiC has a high temperature resistance, which facilitates an improvement in high‐frequency drives. We achieved a high‐power density by utilizing this high temperature resistance. We also fabricated a prototype and tested it with loads up to 65 kW.  相似文献   

19.
This paper presents a novel design procedure for class E2 dc/dc converter. The design procedure requires only circuit equations and design specifications. When the circuit equations are got, the other procedures for the computation of the design values are carried out with aid of computer. Therefore, we can design class E2 dc/dc converters with any conditions by using the proposed design procedure. Moreover, we give the design and the performance curves of class E2 dc/dc converter and discuss about them. By carrying out the circuit experiments, we show the validity of the proposed design procedure. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, a new soft switching direct current (DC)–DC converter with low circulating current, wide zero voltage switching range, and reduced output inductor is presented for electric vehicle or plug‐in hybrid electric vehicle battery charger application. The proposed high‐frequency link DC–DC converter includes two resonant circuits and one full‐bridge phase‐shift pulse‐width modulation circuit with shared power switches in leading and lagging legs. Series resonant converters are operated at fixed switching frequency to extend the zero voltage switching range of power switches. Passive snubber circuit using one clamp capacitor and two rectifier diodes at the secondary side is adopted to reduce the primary current of full‐bridge converter to zero during the freewheeling interval. Hence, the circulating current on the primary side is eliminated in the proposed converter. In the same time, the voltage across the output inductor is also decreased so that the output inductance can be reduced compared with the output inductance in conventional full‐bridge converter. Finally, experiments are presented for a 1.33‐kW prototype circuit converting 380 V input to an output voltage of 300–420 V/3.5 A for battery charger applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号