首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The current study focuses on the occurrence of selected endocrine disrupting compounds, pharmaceuticals and personal care products in Lake Huron Water and their removal using ozone/hydrogen peroxide based pre-coagulation, advanced oxidation process (AOP). Raw Lake Huron water spiked with nine target compounds was treated in a dual train pilot scale treatment plant. None of the target chemicals showed any significant removals following conventional treatment processes (coagulation, sedimentation and filtration). Five of the nine target pollutants plummeted to concentrations below the method detection limits following AOP. For all the target compounds AOP treatment provided higher removal compared to conventional treatment.  相似文献   

2.
A vast number of persistent organic pollutants have been found in wastewater effluent, surface water, and drinking water around the world. This indicates their ineffective removal from water and wastewater using conventional treatment technologies. In addition to classical persistent organics such as organochlorine insecticides, solvents, and polychlorinated biphenyls, a growing number of emerging pollutants of both synthetic and natural origins have been identified as major environmental pollutants in recent years. A variety of advanced and conventional treatment options have been suggested for the removal and/or destruction of these persistent organics in water and wastewater, such as chemical oxidation, activated carbon adsorption, and membrane filtration. Of these options, chemical oxidation using ozone, alone or in combination with additional physical/chemical agents (i.e., advanced oxidation), has been proved a highly effective treatment process for a wide spectrum of emerging aqueous organic pollutants, including pesticides, pharmaceuticals, personal care products, surfactants, microbial toxins, and natural fatty acids. In this paper, we discuss the emerging organic pollutants of concern in the aquatic environment and focus on the issues associated with their removal using ozonation and advanced oxidation processes.  相似文献   

3.
Methyl-tert-butylether (MTBE) is attracting more and more attention since it was discovered in groundwater and other raw water sources for waterworks and proved to difficult to remove during conventional treatment steps in drinking water production. Therefore advanced treatment processes have to be evaluated in addition to established treatment technologies. Laboratory based experiments were carried out studying ozonation with varying ozone concentrations at different pH values. For the elimination of MTBE the degradation through hydroxyl radicals was identified as the main degradation pathway. No decline of MTBE concentration occurred in experiments with molecular ozone, but AOP (Advanced Oxidation Processes) experiments where hydrogen peroxide (H2O2) was added showed a more efficient elimination. However, no complete mineralization was achieved — tert-butyl alcohol (tBA) and tert-butyl formate (tBF) were identified as metabolites. In natural waters (i.e., groundwater, bank filtrated water, and drinking water) the efficiency of MTBE removal was strongly dependent on the content of natural organic matter and alkalinity because of their scavenging characteristics. However, bromate formation was observed as well and could cause problems for drinking water production. Comparison with data gained from waterworks showed that conventional ozonation techniques as applied in waterworks are not able to remove MTBE efficiently.  相似文献   

4.
Ozone/hydrogen peroxide batch treatment was utilized to study the degradation of the steroidal hormone estrone (E1). The competition kinetics method was used to determine the rate constants of reaction for direct ozone and E1, and for hydroxyl radicals and E1 at three pH levels (4, 7, and 8.5), three different molar O3/H2O2 ratios (1:2, 2:1, and 4:1) and a temperature about 20°C. The average second-order rate constants for direct ozone-E1 reaction were determined as 6.2?×?103?±?3.2?×?103 M?1s?1, 9.4?×?105?±?2.7?×?105 M?1s?1, and 2.1?×?107?±?3.1?×?106 M?1s?1 at pH 4, 7, and 8.5, respectively. It was found that pH had the greatest influence on the reaction rate, whereas O3/H2O2 ratio was found to be slightly statistically significant. For the hydroxyl radical-E1 reaction, apparent rate constants ranged from 1.1?×?1010 M?1s?1 to 7.0?×?1010 M?1s?1 with an average value of 2.6?×?1010 M?1s?1. Overall, O3/H2O2 is shown to be an effective treatment for E1.  相似文献   

5.
To obtain an idea of the magnitudes of the ozone loss rates rO3 in practical applications of ozone, an overall determination of the ozone decay profiles and rate constants was carried out in four different systems. These systems resemble different conditions for industrial application of ozone and the peroxone process, such as in the field of micro electronics, drinking water purification, disinfection, etc. Therefore, the behavior of ozone was monitored in the pH range from 4.5 to 9.0, in pure water and phosphate buffered systems in absence and presence of small amounts of hydrogen peroxide (10?7 M to 10?5 M H2O2). First the reproducibility of the ozone decay profiles was checked and from the various kinetic formalism tests, the reaction order 1.5 for the ozone decay rate has been selected. As expected, hydrogen peroxide increases the decay rates. In pure systems, added concentrations of 10?7M H2O2 already cause a remarkable acceleration of the ozone decay in the acidic and neutral pH range compared to the pure systems. However for alkaline pH conditions almost no effect of the low hydrogen peroxide concentrations was noticed. Contradictory to literature data, in the absence of hydrogen peroxide, ozone displays faster decays in the buffered systems of low ionic strength of 0.02 compared to pure water. This acceleration is more pronounced for acidic pH conditions. Low concentrations of phosphate may indeed accelerate the ozone decay in the presence of organic matter. Adding H2O2 concentrations below 10?5M to phosphate buffered solutions has a negligible effect on the ozone decay rate compared with pure water systems, except for pH 7. It appears that phosphate masks the effect of hydrogen peroxide below 10?5 M as tested here. Thus the application of AOP's by adding low concentrations of hydrogen peroxide is not well feasible in the presence of phosphate buffers in pure water systems.  相似文献   

6.
Nitro and chlorobenzene compounds, which are widely used in dye industries, have been associated recently with groundwater contamination. Because of their potential toxicity and for taste and odor considerations, three main actions were undertaken to solve the problem. First, to follow the advance of pollution toward the wells, samples were collected automatically and analyzed using GC-MS. Results indicate that o-chloronitrobenzene was the main pollutant in concentrations ranging from 10 to 2000μg/L. Second, to monitor the drinking water quality, an on-line spectrophotometer was used to measure the optical density at 254 nm at the inlet and outlet of the plant. Third, the feasibility of using the O3/H2O9 combination was determined at a 450 L/h pilot plant. Reduction of concentrations of chloronitrobenzenes from 1900 μ/L to less than 20 μg/L could be reached by the application of 8 mg O3/L and 3 mg H2O9/L with a 20-minute contact time. To avoid an eventual bacterial egrowfn in the network due to biodegradability of the oxidation by-products, sand and GAC filtration were tested after oxidation. An evaluation of the costs of these different treatments is also presented.  相似文献   

7.
    
This study investigated the degradability of pharmaceuticals and personal care products (PPCPs) by ozonation for the treatment of secondary effluent of a municipal wastewater treatment plant. A set of experiments were conducted in a laboratory using a pilot-scale process consisting of three flow-through reactors in series, by varying the ozone dose (1–9 mg L?1), the hydraulic retention time (5–15 min), and the concentration of ozone injected into the reactors (14–42 mg L?1). Thirty-seven PPCPs were detected in the secondary effluent, which belongs to the use categories of antibiotics, analgesics, antiarrhythmic agents, anticonvulsants, vasodilators, lipid modifying agents, anti-itch drugs, anti-psychotic drugs, insect repellents, bronchodilators, diuretics, peptic ulcer drugs, NMDA receptor antagonists, antifungal drugs, antimicrobial drugs, and antineoplastic agents. These PPCPs were broadly classified into five groups ranging from “sensitive” to ozone (O3) or “unstable” in the ozonation process, to the group of “insensitive” to O3 or “very stable” in the ozonation process. These groups are based on the PPCP concentrations after the ozone treatment and their limit of detection (LOD). Furthermore, this study examined comparatively the effects of the ozone dose, the retention (reaction) time, and the concentration of O3 supplied to the reactors on the degradability of the PPCPs.  相似文献   

8.
The recalcitrant pharmaceutical compounds carbamazepine, clofibric acid, diazepam, and diclofenac were monitored in municipal wastewater by ESI-LC-MS and -MS-MS in positive and negative mode. Although biological treatment by conventional and membrane bioreactor failed, the advanced oxidation methods using ozone (O3), O3/UV or hydrogen peroxide in combination with UV (H2O2/UV), successfully achieved their complete elimination. Target compounds could be confirmed as permanently present pollutants in Aachen-Soers wastewater in concentrations between 0.006 and 1.9 μg L?1 prior to AOP treatment resulting in a complete elimination.  相似文献   

9.
This works reports on electrical discharge performed in a foaming environment. This new method allows for an effective treatment of polluted gas by contacting the large streams of gas with small amount of liquid. The possibility of generation of oxidants in the foaming column was examined. Hydrogen peroxide (H2O2), hydroxyl radicals and the small amount of ozone were generated in the foam. It was possible to obtain 40 mgH2O2/dm3 at 14.5 kV of applied voltage and 5 dm3/min oxygen substrate gas flow. In case of air the maximum concentration was 35 mgH2O2/dm3 in the same applied voltage and gas flow conditions.  相似文献   

10.
    
Pulsed corona discharge (PCD) in oxygen-nitrogen mixtures results in formation of nitrogen oxides, transformed to aqueous nitrates in contact with water. The experimental research into the impact of formate and oxalate to nitrate formation in aqueous solutions treated with PCD was undertaken. The impact of paracetamol, ibuprofen, indomethacin and their oxidation products to nitrate formation was also analyzed. Pharmaceuticals obstructed nitrate formation, while carboxylic anions and pharmaceuticals’ oxidation products noticeably improved nitrate formation in treated solutions as compared to water. The nitrate formation enhancement is explained by the aqueous ozone decomposition and hydroxyl radical formation known to be improved by carboxylic anions.  相似文献   

11.
Increased public awareness, potential human health effects, and demonstrated impacts on aquatic ecosystems have stimulated recent interest in pharmaceuticals, personal care products (PPCPs), and endocrine-disrupting compounds (EDCs) in water and wastewater. Due to the potential public and environmental health implications, some agencies are taking a proactive approach to controlling trace organic contaminant (TOrC) concentrations in water supplies. This review describes some of the research related to the toxicity and estrogenicity of wastewater-derived TOrCs in addition to regulatory guidance from several international agencies. This review also evaluates pilot- and full-scale studies to characterize the efficacy of ozonation for TOrC mitigation in wastewater applications.  相似文献   

12.
The applicability of a sequential process of ozonation and ozone/hydrogen peroxide process for the removal of soluble organic compounds from a pre-coagulated municipal sewage was examined. 6–25% of initial T-CODCr was removed at the early stage of ozonation before the ratio of consumed ozone to removed T-CODCr dramatically increased. Until dissolved ozone was detected, 0.3 mgO3/mgTOC0 (Initial TOC) of ozone was consumed. When an ozone/hydrogen peroxide process was applied, additional CODCr was removed. And we elucidated that two following findings are important for the better performance of ozone/hydrogen peroxide process; those are to remove readily reactive organic compounds with ozone before the application of ozone/hydrogen peroxide process and to avoid the excess addition of hydrogen peroxide. Based on these two findings, we proposed a sequential process of ozonation and multi-stage ozone/hydrogen peroxide process and the appropriate addition of hydrogen peroxide. T-CODCr, TOC and ATU-BOD5 were reduced to less than 7 mg/L, 6 mgC/L and 5 mg/L, respectively after total treatment time of 79 min. Furthermore, we discussed the transformation of organic compounds and the removal of organic compounds. The removal amount of CODCr and UV254 had good linear relationship until the removal amounts of CODCr and UV254 were 30 mg/L and 0.11 cm?1, respectively. Therefore UV254 would be useful for an indicator for CODCr removal at the beginning of the treatment. The accumulation of carboxylic acids (formic acid, acetic acid and oxalic acid) was observed. The ratio of carbon concentration of carboxylic acids to TOC remaining was getting higher and reached around 0.5 finally. Removal of TOC was observed with the accumulation of carboxylic acids. When unknown organic compounds (organic compounds except for carboxylic acids) were oxidized, 70% was apparently removed as carbon dioxide and 30% was accumulated as carboxylic acids. A portion of biodegradable organic compounds to whole organic compounds was enhanced as shown by the increase ratio of BOD/CODCr.  相似文献   

13.
药物和个人护理用品(PPCPs)是一类新兴的有机污染物,与常见的污染物相比,在水环境中浓度很低但化学结构复杂,种类多,性质差异大,具有毒性,常规处理技术很难完全去除。非均相催化臭氧化技术的固相催化剂可回收重复利用,二次污染少,目前此处理技术在PPCPs领域的研究已经非常广泛。文章详细描述了非均相催化臭氧化技术降解PPCPs时常遵循的表面反应机理、自由基反应机理、协同反应机理,进一步阐释了自由基反应机理中的4种途径,简要介绍了催化剂等因素对PPCPs降解的影响,归纳总结了非均相催化臭氧化在PPCPs治理领域的应用进展,提出了现今非均相催化臭氧化技术存在的问题,最后展望了非均相催化臭氧化技术的未来研究方向及应用前景。  相似文献   

14.
This work reports the experimental results of kinetics study of n-butylparaben (BP) degradation in H2O2/UV systems. A pseudo–steady-state and competition kinetic approaches were used to determine the reaction rate constants between the BP and ?OH. In competition kinetics atrazine (2.30?×?109 M?1?s?1) was used as a reference compound. The measured rate constants for ?OH reaction with BP ranged from (3.84 ± 0.12)?×?109 M?1?s?1 to (8.56 ± 0.90)?×?109 M?1?s?1 depending on solution pH and temperature. Values of the rate constant obtained using different methods were in good agreement. The calculated activation energy was equal to 19.01 ± 1.02 kJ mol?1.  相似文献   

15.
The process of car body painting is one of the manufacturing processes that may involve the use of organic solvents for surface treatments. As a result of this process, wastewaters containing raw materials and auxiliary products used during the cleaning step are produced. The main objective of this study is to find an appropriate purification technique to eliminate or reduce the contamination present in this kind of wastewater. Different treatments were investigated: ozonation, ozonation combined with hydrogen peroxide, photo-Fenton treatment, and coagulation- flocculation.  相似文献   

16.
Kinetics of competition between the ozone direct reaction with compounds in water, ozone-hydroperoxide ion reaction leading to free radicals in the O3/H2O2 process, and the photolysis of ozone in the O3/UV process are discussed in terms of diffusion and reaction times to establish conditions for these reactions to be competitive. Film theory and chemical kinetic concepts then are applied to estimate initial rates of ozone absorption and consumption, removal rates of compounds present in water, and the importance of the radical oxidation path versus direct ozone and/or photolysis reactions.  相似文献   

17.
The present study investigates the degradation of PGMEA and its TOC removal using O3, UV/O3, O3/H2O2, and UV/H2O2 processes under various experimental conditions. Ozonation of PGMEA was substantially enhanced in the presence of UV light and H2O2. Approximately 33% of TOC enhancement was noted in UV/O3 process over ozonation process. A linear relationship between PGMEA and H2O2 decomposition was observed in O3/H2O2 and UV/H2O2 processes. The influence of solution pH on the decomposition of PGMEA was investigated and found that basic medium was the most efficient in all AOPs. After 60 minutes 62.4%, 100%, 90% and 54% of PGMEA decomposition at pH 10.0 was observed in O3, UV/O3, O3/H2O2, and UV/H2O2 processes, respectively. It is concluded that UV/O3 process is a promising approach for the oxidation and removal of PGMEA.  相似文献   

18.
Applied ozone dosages of 20, 25, and 30 mg/L to lake water utilized by the city of Shreveport, LA produced no significant reductions in trihalomethane formation potentials (THMFP). However, the addition of 20 mg/L of hydrogen peroxide and/or 0.67 W/L of UV radiation (254 nm) in combination with ozone produced decreases in THMFP of over 60% in 60 minutes. Smaller THMFP decreases were seen with shorter contact times. The use of H2O2 and/or UV in combination with O3 increased the percentage of applied ozone consumed by the lake water (i.e., enhanced the ozone mass transfer) five times over simple ozonation.  相似文献   

19.
The relative importance of free radical and direct ozonation/photolysis oxidation of micropollutants in water can be estimated from simple kinetics of aqueous ozonation reactions provided these reactions develop in the slow kinetic regime of absorption. Knowledge of kinetic expressions of free radical initiation reactions and direct ozone-micropollutant or UV radiation-micropollutant reactions (and corresponding parameters: reaction rate constants, quantum yields, etc.) allows an estimation of the reaction rate ratios for any micropollutant in the ozone alone and combined with hydrogen peroxide and/or UV radiation oxidation systems.  相似文献   

20.
The present study investigates the decomposition of N-Methyl-2-Pyrolidone (NMP) using conventional ozonation (O3), ozonation in the presence of UV light (UV/O3), hydrogen peroxide (O3/H2O2), and UV/H2O2 processes under various experimental conditions. The influence of solution pH, ozone gas flow dosage, and H2O2 dosage on the degradation of NMP was studied. All ozone-based advanced oxidation processes (AOPs) were efficient in alkaline medium, whereas the UV/H2O2 process was efficient in acidic medium. Increasing ozone gas flow dosage would accelerate the degradation of NMP up to certain level beyond which no positive effect was observed in ozonation as well as UV light enhanced ozonation processes. Hydrogen peroxide dosage strongly influenced the degradation of NMP and a hydrogen peroxide dosage of 0.75 g/L and 0.5 g/L was found to be the optimum dosage in UV/H2O2 and O3/H2O2 processes, respectively. The UV/O3 process was most efficient in TOC removal. Overall it can be concluded that ozonation and ozone-based AOPs are promising processes for an efficient removal of NMP in wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号