首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
The microstructural,optical,and magnetic properties and room-temperature photoluminescence(PL) of Mn-doped ZnO thin films were studied.The chemical compositions were examined by energy dispersive X-ray spectroscopy(EDS) and the charge state of Mn ions in the ZnO:Mn films was characterized by X-ray photoelectronic spectrometry(XPS).From the X-ray diffraction(XRD) data of the samples,it can be found that Mn doping does not change the orientation of ZnO thin films.All the films prepared have a wurtzite stru...  相似文献   

2.
Doping of ZnO nanostructures was investigated by using a low temperature electrochemical process. Various dopant materials have been studied, including transition metals, group I, and group VII elements. The structure, composition, and optical properties of the doped ZnO nanostructures were analyzed by scanning electron microscopy, energy dispersive X-ray spectroscopy, photoluminescence, and x-ray diffraction. It was demonstrated that dopant elements were incorporated into the ZnO structures. The effects of dopant incorporation on the structure and properties of ZnO were also investigated. This low temperature approach is compatible with current micro-fabrication techniques and promising for large-scale production of doped ZnO nanostructures for optical and electronic applications.  相似文献   

3.
The physical vapour deposition (PVD) of gallium monotelluride (GaTe) in different crystalline habits was established in the growth ampoule, strongly depending on the temperature gradient. Proper control on the temperatures of source and growth zones in an indigenously fabricated dual zone furnace could yield the crystals in the form of whiskers and spherulites. Optical and electron microscopic images were examined to predict the growth mechanism of morphologies. The structural parameters of the grown spherulites were determined by X-ray powder diffraction (XRD). The stoichiometric composition of these crystals was confirmed using energy dispersive analysis by X-rays (EDAX). The type and nature of electrical conductivity were identified by the conventional hot probe and two probe methods, respectively. The mechanical parameters, such as Vickers microhardness, work hardening index, and yield strength, were deduced from microindentation measurements. The results show that the vapour grown p-GaTe crystals exhibit novel physical properties, which make them suitable for device applications.  相似文献   

4.
Highly transparent ZnO thin films were deposited at different substrate temperatures by pulsed laser deposition in an oxygen atmosphere. The thin films were characterized by various techniques including X-ray diffraction, scanning electron microscopy, optical absorption, and photoluminescence. We demonstrated that oriented wurtzite ZnO thin films could be deposited at room temperature using a high purity zinc target. Variable temperature photoluminescence revealed new characteristics in the band edge emission. The underlying mechanism for the observed phenomena was also discussed.  相似文献   

5.
Alkali metal(Li, Na, K) doped ZnO powders were synthesized by solid-state reaction at different calcination temperatures and holding time. Effects of holding time and K sources on the infrared emissivity of ZnO were investigated. The structure and surface morphologies of samples were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The UV-Vis absorption and infrared emissivities were investigated by a UV-Vis spectrophotometer and an infrared emissometer, respectively. XRD patterns confirm the wurtzite structure of the as prepared samples with single phase. Smooth grain surfaces are detected in all doped ZnO samples, while ZnO:Li and ZnO:Na present the aggregation of grains. The redshifts in the optical band-gap are observed in K-, Na-, and Li-doped ZnO with the values 3.150, 3.144, and 3.142 eV. Due to better crystalline quality, ZnO:K shows a lower emissivity than others. The emissivity of K-doped ZnO decreases to the minimum value(0.804), at 1200 °C and holding 2 h. Compared with KNO3 as K source, K2CO3 doped ZnO has lower emissivities.  相似文献   

6.
Ag modified ZnO (Ag/ZnO) nanocrystals were prepared by a facile and low temperature wet chemical method. The phase structures, morphologies, and optical properties of the as-prepared samples were characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), the Brumauer-Emmett-Teller (BET) surface area, UV-vis diffuse reflectance spectroscopy and photoluminescence (PL) spectra, respectively. The photocatalytic performance of Ag/ZnO with diffent Ag contents was measured with the degradation of methyl orange (MO) at room temperature under UV light irradiation. The experimental results indicated that the well-crystalline ZnO nanopaticles with a size of ca. 4.5 nm exhibited a high photocatalytic activity for the degradation of MO with the apparent rate constant (k) of 1.57 ×10-2 min-1, and the photocatalytic activities of ZnO were further enhanced by modification with silver. When the Ag loading was 3mol%, Ag/ZnO showed the highest photocatalytic acitivity with a k value of 5.452×10-2 min-1, which is 3.5 and 2.5 time more than that of ZnO and commercial P25, respectively.  相似文献   

7.
Photocatalytic reduction of CO_2 was carried out on villiform spherical catalysts of Pd-TiO_2 in isopropanol solution.The catalysts were synthesized by hydrothermal method,their structures,morphologies and optical absorption properties were characterized by X-ray diffraction(XRD),energy dispersive X-ray spectroscopy(EDS),scanning electron microscopy(SEM),transmission electron microscopy(TEM),highresolution transmission electron microscopy(HRTEM)and UV-vis absorption spectroscopy(UV-vis).The photocatalytic activities with different loading amounts and morphologies were evaluated for determining the dominant effect and optimizing the catalyst preparation.Based on a villiform spherical TiO_2 with the largest specific surface area in our experiments,we prepared a set of catalysts with various loading amounts of palladium and tested them by bubbling CO_2 through the slurry of catalyst and isopropanol.The highest formation rate of isopropyl formate was 276.6μmol/g?cat/h.Eventually we proposed the reaction mechanism.  相似文献   

8.
A simple and easily operated technique was developed to fabricate GaN films. GaN films possessing hexagonal wurtzite structure were fabricated on Si(111) substrates with ZnO buffer layers through nitriding Ga2O3 films in the tube quartz furnace. ZnO buffer layers and Ga3O3 films were deposited on Si substrates in turn by using radio frequncy magnetron sputtering system before the nitriding process. The structure and composition of GaN films were studied by X-ray diffraction, selected area electron diffraction and Fourier transform infrared spectrophotometer. The morphologies of GaN films were studied by scanning electron microscopy. The results show that ZnO buffer layer improves the crystalline quality and the surface morphology of the films relative to the films grown directly on silicon substrates. The measurement result of room-temperature photoluminescence spectrum indicates that the photoluminescence peaks locate at 365 nm and 422 nm.  相似文献   

9.
TiO2 nanotube (TNT) arrays were fabricated by anodic oxidation of titanium foil in a fluoride- based solution, on which Cu20 particles were loaded via galvanostatic pulse electrodeposition in cupric acetate solutions in the absence of any other additives. The structure and optical properties of Cu2O-loaded TiO2 nanotube arrays (Cu2O-TNTs) were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-Vis absorption, and the photoelectrochemical performance was measured using an electrochemical work station with a three-electrode configuration. The results show that the Cu2O particles distribute uniformly on the highly ordered anatase TiO2 nanotube arrays. The morphologies of Cu2O crystals change from branched, truncated octahedrons to dispersive single octahedrons with increasing deposition current densities. The Cu2O- TNTs exhibited remarkable visible light responses with obvious visible light absorption and greatly enhanced visible light photoelectrochemical performance. The I-V characteristics under visible light irradiation show a distinct plateau in the region between approximately -0.3 and 0 V, resulting in higher open-circuit voltages and larger short-circuit currents with increased Cu2O deposition.  相似文献   

10.
Periodically ordered ZnO nanowire arrays were fabricated by a combination of soft templates created by electron beam lithography and an electrochemical process. Individual ZnO nanowires were precisely placed in desired locations to form two-dimensional periodic structures with specific patterns. Scanning electron microscopy and light diffraction measurements confirmed the long-range ordered structures in the nanowire arrays. Variable temperature photoluminescence revealed both band edge and defect emissions. The obtained photonic structures may have potential applications in optical and optoelectronic devices.  相似文献   

11.
Different three-dimension (3D) nanotetrapods,containing club-like nanocrystals,nanotetrapods and four-foot-like nanocrystals were synthesized from Zinc sheet via CO2 laser irradiation and coaxially transporting O2.Different nanoproducts were fabricated by changing the content of oxygen in the experiment.The morphologies,components,phase structures and optical properties of the products were investigated by a field-emission scanning electron microscopy,an X-ray diffraction,an energy dispersed X-ray spectrometer and a photoluminescence spectroscope.The X-ray diffraction spectra were obtained on a Rigaku D/max 2500PC diffractometer.The experimental results reveal that high quality ZnO nanotetrapods can be fabricated on the special parameters,and growth of ZnO nanotetrapods depends on Vapour-Liquid-Solid(VLS) model,and the content of oxygen in the gas,namely,oxygen partial pressure is one of main factors to control morphologies and optical properties of ZnO nanotetrapods;these advantages above are important for realization of optoelectronic devices.  相似文献   

12.
Nanocomposites MgFe2O4/SiO2 were successfully synthesized by the sol-gel method in the presence of N, N-dimethylformamide (DMF). The formation of pure MgFe2O4 was confirmed by powder X-ray diffraction (XRD) and electron diffraction. The structural evolution of MgFe2O4 nanocrystals was followed by powder X-ray diffraction and IR absorption spectroscopy. The formation of spinel structure of MgFe2O4 started at 800 °C, and completed at 900 °C. The transmission electron microscopy (TEM) measurements suggest that the particle sizes increase with the increasing annealing temperature, and the mean particle sizes of the spherical samples annealed at 800 °C, 900 °C and 1 050 °C are ca. 3 nm, 8 nm and 11 nm, respectively. Magnetization measurements at room temperature and 78 K indicate superparamagnetic nature of these MgFe2O4 nanocrystals. Funded by the National Natural Science Foundation of China(No. 30771676), the Natural Science Foundation of Jiangsu Province (No. BK20081842), and the Foundation of Nanjing Bureau of Personal for the Returned Overseas Chinese Excellent Scholars  相似文献   

13.
Photocatalytic reduction of CO2 was carried out on villiform spherical catalysts of Pd-TiO2 in isopropanol solution. The catalysts were synthesized by hydrothermal method, their structures, morphologies and optical absorption properties were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and UV-vis absorption spectroscopy (UV-vis). The photocatalytic activities with different loading amounts and morphologies were evaluated for determining the dominant effect and optimizing the catalyst preparation. Based on a villiform spherical TiO2 with the largest specific surface area in our experiments, we prepared a set of catalysts with various loading amounts of palladium and tested them by bubbling CO2 through the slurry of catalyst and isopropanol. The highest formation rate of isopropyl formate was 276.6 μmol/g·cat/h. Eventually we proposed the reaction mechanism.  相似文献   

14.
Zn0.8Cd0.2O thin films prepared using the spin-coating method were investigated. X-ray diffraction, scanning electron microscopy, and UV-Vis spectrophotometry were employed to illustrate the effects of the pre-heating temperature on the crystalline structure, surface morphology and transmission spectra of Zn0.8Cd0.2O thin films. When the thin films were pre-heated at 150 °C, polycrystalline ZnO thin films were obtained. When the thin films were pre-heated at temperatures of 200 °C or higher, preferential growth of ZnO nanocrystals along the c-axis was observed. Transmission spectra showed that thin films with high transmission in the visible light range were prepared and effective bandgap energies of these thin films decreased from 3.19 eV to 3.08 eV when the pre-heating temperature increased from 150 °C to 300 °C.  相似文献   

15.
By a novel controlled combustion synthesis method, a large amount of ZnO nano-whiskers with different morphologies like nanotetrapods, long-leg nanotetrapod and multipods, were prepared without any catalysts and additives in open air at high temperature. Their morphologies, structures and optical properties were investigated by using SEM, XRD and PL spectrum. The possible growth mechanisms on the ZnO nano-whiskers were proposed in this paper. Supported by the National Natural Science Foundation of China (Grant Nos. 50572010, 50742007 and 10672020), National Defense Founds of China (Grant Nos. 51420205BQ0154 and A2220061080), “863” Project of China (Grant No. 2007AA03Z103), and the Scientific Research Foundation of Graduate School of BIT (Grant No. AA200802)  相似文献   

16.
A simple sonochemical route for the surface coating of titanium dioxide on cadmium sulfide nanocrystal was reported. After 2 h ultrasonic irradiation treatment, the mixture of CdS nanocrystals and tetrabutyl titanate in an aqueous medium yielded CdS/TiO2 nanocrystals composites with core/shell structure. The thickness of TiO2 layer with smooth interface could be easily controlled via changing the concentration of the precursors and the time of irradiation. The core/shell nanocrysrals were characterized by X-ray diffraction, transmission electron microscope and UV-vis spectrometry techniques. The prepared semiconductor composites with particular band structure present appealing properties especially in photochemical activity.  相似文献   

17.
The structure and properties of the glass-ceramics were tested with X-ray diffraction testing instrument,correlative software,and other modern testing means.Then the effect of Al2O3 content on internal stresses in CaO-Al2O3-SiO2 glass-ceramics was studied deeply.In order to study the relationship of Al2O3 to the residual stress of CaO-Al2O3-SiO2 glass-ceramics,X-ray diffraction "sin2ψ" was used.The means utilized the x radial incidence produced from cathode radial tube,and took the space between crystals as measurement of strain.When the stresses produced,the space between crystals changed and the diffraction peak moved during Bragg diffraction.The magnitude of movement is related to the stresses.The experimental results show the residual stress is considerably high and Al2O3 can influence the mechanical properties of this material hugely.  相似文献   

18.
采用溶胶一凝胶法在石英玻璃衬底上制备了Fe掺杂的ZnO薄膜,研究了不同的Fe掺杂浓度对ZnO薄膜的微结构与光学性质的影响.利用x射线衍射分析了薄膜样品的晶向和晶相.利用原子力显微镜观测了薄膜样品的表面形貌,利用双光束紫外-可见分光光度计分析了znO薄膜样品的光学性质.实验结果表明:所有ZnO薄膜样品都是六角纤锌矿结构,ZnO晶粒沿c轴择优生长.质量分数为1%fe掺入之后,ZnO薄膜的C轴择优取向进一步增强,薄膜的晶化质量也得到进一步提高.当Fe的掺杂浓度高于1%时,ZnO薄膜(002)衍射峰的强度又降低了,这可能是由于Fe2+(x=2或3)和zn2+具有不同的离子半径,大量的Fe2+进入晶格取代Zn2+导致晶格严重畸变,从而影响了znO晶粒的正常生长.所制备的ZnO薄膜在可见光区都具有高的透射丰,由吸收边估算出来的ZnO薄膜的光学带隙表明:随着Fe的掺杂浓度的提高,光学带隙逐渐展宽.  相似文献   

19.
以锌粉、醋酸锌和氢氧化钠为原料,采用水热法制备出了具有结构性缺陷的蒲公英状ZnO。通过X射线衍射仪、扫描电子显微镜、荧光光谱仪和超导量子干涉仪对产物的结构形貌和光学性能及磁学性能进行了表征,并对其生长机理进行了探讨。研究表明,蒲公英状氧化锌为六方纤锌矿结构,由许多顶端为锥尖形的棒自组装而成;其荧光本征发射峰在388nm处,属于激子跃迁发射。在波长450~492nm处所观察到的3个弱蓝光峰是由锌填隙原子中的电子到价带顶的跃迁所致;在波长492~580nm范围内出现的较为宽泛的绿光发射峰根源于电子从导带底到氧错位缺陷能级间的跃迁。蒲公英状ZnO中存在的结构性缺陷使得原本呈现抗磁性的ZnO具有了室温铁磁性,从而可作为一种稀磁半导体应用到自旋电子学领域中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号