首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dry reforming of methane was studied over Ni catalysts supported on γAl2O3, CeO2, ZrO2 and MgAl2O4 (670 °C, 1.5 bar, 16–20 l CH4 mlcatalyst−1 h−1). It is shown that MgAl2O4 supported Ni catalysts promoted with both CeO2 and ZrO2 are promising catalysts for dry reforming of methane with carbon dioxide. Within a certain composition range, the simultaneous promotion with CeO2 and ZrO2 has great influence on the amount of coke and the catalyst service time. XRD analyses indicate that formation of crystalline CexZr1−xO2 mixed oxide phases occurs on double promotion. In particular, incorporation of low amounts of Zr in the CeO2 fluorite structure provides stable dry reforming catalysis. As shown with TPR, promotion leads to a higher reduced state of Ni. SEM, XRD and TPR analyses demonstrate that highly dispersed, doubly promoted Ni catalysts with a strong metal-support interaction are essential for stable dry reforming and suppression of the formation of carbon filaments.  相似文献   

2.
This work investigates the improvement of Ni/Al2O3 catalyst stability by ZrO2 addition for H2 gas production from CH4/CO2 reforming reactions. The initial effect of Ni addition was followed by the effect of increasing operating temperature to 500–700 °C as well as the effect of ZrO2 loading and the promoted catalyst preparation methods by using a feed gas mixture at a CH4:CO2 ratio of 1:1.25. The experimental results showed that a high reaction temperature of 700 °C was favored by an endothermic dry reforming reaction. In this reaction the deactivation of Ni/Al2O3 was mainly due to coke deposition. This deactivation was evidently inhibited by ZrO2, as it enhances dissociation of CO2 forming oxygen intermediates near the contact between ZrO2 and nickel where the deposited coke is gasified afterwards. The texture of the catalyst or BET surface area was affected by the catalyst preparation method. The change of the catalyst texture resulted from the formation of ZrO2–Al2O3 composite and the plugging of Al2O3 pore by ZrO2. The 15% Ni/10% ZrO2/Al2O3 co-impregnated catalyst showed a higher BET surface area and catalytic activity than the sequentially impregnated catalyst whereas coke inhibition capability of the promoted catalysts prepared by either method was comparable. Further study on long-term catalyst stability should be made.  相似文献   

3.
Supported nickel catalysts of composition Ni/Y2O3–ZrO2 were synthesized in one step by the polymerization method and compared with a nickel catalyst prepared by wet impregnation. Stronger interactions were observed in the formed catalysts between NiO species and the oxygen vacancies of the Y2O3–ZrO2 in the catalysts made by polymerization, and these were attributed to less agglomeration of the NiO during the synthesis of the catalysts in one step. The dry reforming of ethanol was catalyzed with a maximum CO2 conversion of 61% on the 5NiYZ catalyst at 800 °C, representing a better response than for the catalyst of the same composition prepared by wet impregnation.  相似文献   

4.
CO2 reforming and partial oxidation of CH4 were investigated on different supported noble metal and Ni catalysts. A detailed thermodynamic analysis was performed for both reactions. The observed reaction behaviour can be predicted by thermodynamics. Product selectivity is catalyst independent, the role of the catalyst is to bring the reactants to approach equilibrium. The partial oxidation is a two-stage process, total oxidation of CH4 is followed by CO2 and H2O reforming of the remaining CH4. A staged addition of O2 to the reactor is tested and recommended. TPSR show that the catalyst surface for CO2 reforming was highly covered with carbonaceous species of four different types; two were identified as reactive intermediates.  相似文献   

5.
The CH4-CO2 reforming was investigated in a fluidized bed reactor using nano-sized aerogel Ni/Al2O3 catalysts, which were prepared via a sol–gel method combined with a supercritical drying process. The catalysts were characterized with BET, XRD, H2-TPR and H2-TPD techniques. Compared with the impregnation catalyst, aerogel catalysts exhibited higher specific surface areas, lower bulk density, smaller Ni particle sizes, stronger metal-support interaction and higher Ni dispersion degrees. All tested aerogel catalysts showed better catalytic activities and stability than the impregnation catalyst. Their catalytic stability tested during 48 h reforming was dependent on their Ni loadings. Characterizations of spent catalysts indicated that only limited graphitic carbon formed on the aerogel catalyst, while massive graphitic carbon with filamentous morphology was observed for the impregnation catalyst, leading to significant catalytic activity degradation. An aerogel catalyst containing 10% Ni showed the best catalytic stability and the lowest rate of carbon deposition among the aerogel catalysts due to its small Ni particle size and strong metal-support interaction.  相似文献   

6.
V.R. Choudhary  K.C. Mondal  T.V. Choudhary 《Fuel》2006,85(17-18):2484-2488
The oxy-CO2 methane reforming reaction (OCRM) has been investigated over CoOx supported on a MgO precoated highly macroporous silica–alumina catalyst carrier (SA-5205) at different reaction temperatures (700–900 °C), O2/CH4 ratios (0.3–0.45) and space velocites (20,000–100,000 cc/g/h). The reaction temperature had a profound influence on the OCRM performance over the CoO/MgO/SA-5205 catalyst; the methane conversion, CO2 conversion and H2 selectivity increased while the H2/CO ratio decreased markedly with increasing reaction temperature. While the O2/CH4 ratio did not strongly affect the CH4 and CO2 conversion and H2 selectivity, it had an intense influence on the H2/CO ratio. The CH4 and CO2 conversion and the H2 selectivity decreased while the H2/CO increased with increasing space velocity. The O2/CH4 ratio and the reaction temperature could be used to manipulate the heat of the reaction for the OCRM process. Depending on the O2/CH4 ratio and temperature the OCRM process could be operated in a mildly exothermic, thermal neutral or mildly endothermic mode. The OCRM reaction became almost thermoneutral at an OCRM reaction temperature of 850 °C, O2/CH4 ratio of 0.45 and space velocity of 46,000 cc/g/h. The CH4 conversion and H2 selectivity over the CoO/MgO/SA-5205 catalyst corresponding to thermoneutral conditions were excellent: 95% and 97%, respectively with a H2/CO ratio of 1.8.  相似文献   

7.
CO2 reforming of CH4 was performed using Ni catalyst supported on La-hexaaluminate which has been an well-known material for high-temperature combustion. La-hexaaluminate was synthesized by sol-gel method at various conditions where different amount of Ni (5–20 wt%) was loaded. Ni/La-hexaaluminate experienced 72 h reaction and its catalytic activity was compared with that of Ni/Al2O3, Ni/La-hexaaluminate shows higher reforming activity and resistance to coke deposition compared to the Ni/Al2O3 model catalyst. Coke deposition increases proportionally to Ni content. Consequently, Ni(5)/La-hexaaluminate(700) is the most efficient catalyst among various Ni/La-hexaaluminate catalysts regarding the cost of Ni in Ni(X)/La-hexaaluminate catalysts. BET surface area, XRD, EA, TGA and TPO were performed for surface characterization. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

8.
In this work, 3% Ru-Al2O3 and 2% Rh-CeO2 catalysts were synthesized and tested for CH4-CO2 reforming activity using either CO2-rich or CO2-lean model biogas feed. Low carbon deposition was observed on both catalysts, which negligibly influenced catalytic activity. Catalyst deactivation during temperature programmed reaction was observed only with Ru-Al2O3, which was caused by metallic cluster sintering. Both catalysts exhibited good stability during the 70 h exposure to undiluted equimolar CH4/CO2 gas stream at 750 °C. By varying residence time in the reactor during CH4-CO2 reforming, very similar quantities of H2 were consumed for water formation. Reverse water-gas shift (RWGS) reaction occurred to a very similar extent either with low or high WHSV values over both catalysts, revealing that product gas mixture contained near RWGS equilibrium composition, confirming the dominance of WGS reaction and showing that shortening the contact time would actually decrease the H2/CO ratio in the syngas produced by CH4-CO2 reforming, as long as RWGS is quasi equilibrated. H2/CO molar ratio in the produced syngas can be increased either by operating at higher temperatures, or by using a feed stream with CH4/CO2 ratio well above 1.  相似文献   

9.
Pb, Sb, Bi and Te doped Ni catalysts were prepared and used for methane reforming with CO2 in order to diminish coke deposition. It was found that small amounts of Pb doped Ni catalysts exhibited excellent coke resistance ability with minor loss of the reforming activity. As the added amount of Pb increased from 0 to 0.015 (mole ratio between Pb/Ni), coke formation rate decreased from 166.7 mg-coke/g-cat h (on Ni/SiO2) to 0, while the reforming activity decreased slightly from 73.2% to 63.3% (conversion of CO2) at 800 °C, 60,000 ml(STP)/g-cat·h (CH4 CO2=1:1, no dilution gas in feed). Higher amounts of Pb and Sb, Bi, Te made Ni catalyst deactivated for methane reforming with CO2.  相似文献   

10.
The CO2 reforming of CH4 to synthesis gas by using praseodymium modified hexaaluminate La1−xPrxNiAl11O19 (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0) as catalysts was studied. The modifier Pr improved the reducibility and catalytic activity of Ni ions as active component in the hexaaluminate lattices, especially the conversion of CH4 and CO2 reached 89.62% and 92.94%, respectively over La0.8Pr0.2NiAl11O19. It was found that the addition of Pr can promote the electronic transformation between the Ni ions and the La ions to maintain Ni at a lower valence, which promotes the activation of CH4.  相似文献   

11.
The present research deals with catalyst development for the utilization of CO2 in dry reforming of methane with the aim of reaching highest yield of the main product synthesis gas (CO, H2) at lowest possible temperatures. Therefore, Ni-Pd bimetallic supported catalysts were prepared by simple impregnation method using various carriers. The catalytic performance of the catalysts was investigated at 500, 600 and 700 °C under atmospheric pressure and a CH4 to CO2 feed ratio of 1. Fresh, spent and regenerated catalysts were characterized by N2 adsorption for BET surface area determination, XRD, ICP, XPS and TEM. The catalytic activity of the studied Ni-Pd catalysts depends strongly on the support used and decreases in the following ranking: ZrO2-La2O3, La2O3 > ZrO2 > SiO2 > Al2O3 > TiO2. The bimetallic catalysts were more active than catalysts containing Ni or Pd alone. A Ni to Pd ratio = 4 at a metal loading of 7.5 wt% revealed the best results. Higher loading lead to increased formation of coke; partly in shape of carbon nanotubes (CNT) as identified by TEM. Furthermore, the effect of different calcination temperatures was studied; 600 °C was found to be most favorable. No effect on the catalytic activity was observed if a fresh catalyst was pre-reduced in H2 prior to use or spent samples were regenerated by air treatment. Ni and Pd metal species are the active components under reaction conditions. Best conversions of CO2 of 78% and CH4 of 73% were obtained using a 7.5 wt% NiPd (80:20) ZrO2-La2O3 supported catalyst at a reaction temperature of 700 °C. CO and H2 yields of 57% and 59%, respectively, were obtained.  相似文献   

12.
A new process to integrate coal pyrolysis with CO2 reforming of methane over Ni/MgO catalyst was put forward for improving tar yield. And several Chinese coals were used to confirm the validity of the process. The experiments were performed in an atmospheric fixed-bed reactor containing upper catalyst layer and lower coal layer to investigate the effect of pyrolysis temperature, coal properties, Ni loading and reduction temperature of Ni/MgO catalysts on tar, water and char yields and CH4 conversion at fixed conditions of 400 ml/min CH4 flow rate, 1:1 CH4/CO2 ratio, 30 min holding time. The results indicated that higher tar yield can be obtained in the pyrolysis of all four coals investigated when coal pyrolysis was integrated with CO2 reforming of methane. For PS coal, the tar, water and char yield is 33.5, 25.8 and 69.5 wt.%, respectively and the CH4 conversion is 16.8%, at the pyrolysis temperature of 750 °C over 10 wt.% Ni/MgO catalyst reduced at 850 °C. The tar yield is 1.6 and 1.8 times as that in coal pyrolysis under H2 and N2, respectively.  相似文献   

13.
Structured silicalite-1 zeolite encapsulated Ni catalyst supported on silicon carbide foam (i.e., Ni@S1-SiC) was prepared using a new yet simple one-pot method, showing the significantly improved anti-sintering and anti-coking performance in comparison with the conventional supported and encapsulated Ni catalysts (i.e., Ni/S1, Ni/S1-SiC, and Ni@S1), in catalytic dry reforming of methane (DRM). The developed Ni0.08@S1-SiC catalyst showed high CO2/CH4 conversions of >85% and H2/CO molar ratio of >0.85 at 700°C, outperforming other control catalysts under investigation. Additionally, the Ni0.08@S1-SiC catalyst demonstrated high turnover frequency (TOF) values of ~5.6 and ~2.1/s regarding to CO2/CH4 conversions at 400°C, exhibiting excellent stability and low pressure-drop during 100 hr on stream evaluation. Post-reaction characterization of the used catalysts demonstrated that the combination of zeolite encapsulated Ni catalysts and SiC foam enabled well-dispersed and ultrafine Ni nanoparticles, low pressure drop and intensified transfer steps, presented excellent anti-sintering and anti-coking abilities.  相似文献   

14.
Carbon dioxide reforming of methane to synthesis gas has been investigated with Ni catalysts supported on monolithic foam SiC, which were prepared by the initial wetness impregnation method. The catalyst of 7 wt%Ni/SiC was verified to be the best one in different Ni content catalysts. Compared with other catalysts such as 7 wt%Ni/SiO2 and 7 wt%Ni/Al2O3, the 7 wt%Ni/SiC catalyst exhibited not only the highest activity but also remarkable stability and excellent coke resistance during 100 h reaction. Furthermore, the conversion of CO2 and CH4 remained at about 96% and 94%, respectively in 100 h reaction time. The structure and properties of the catalysts were characterized by BET, XRD, H2-TPR, XPS and TEM techniques.  相似文献   

15.
Commercial Cu–ZnO–Al2O3 catalysts are used widely for steam reforming of methanol. However, the reforming reactions should be modified to avoid fuel cell catalyst poisoning originated from carbon monoxide. The modification was implemented by mixing the Cu–ZnO–Al2O3 catalyst with Pt–Al2O3 catalyst. The Pt–Al2O3 and Cu–ZnO–Al2O3 catalyst mixture created a synergetic effect because the methanol decomposition and the water–gas shift reactions occurred simultaneously over nearby Pt–Al2O3 and Cu–ZnO–Al2O3 catalysts in the mixture. A methanol conversion of 96.4% was obtained and carbon monoxide was not detected from the reforming reaction when the Pt–Al2O3 and Cu–ZnO–Al2O3 catalyst mixture was used.  相似文献   

16.
CO2 reforming of methane was studied over modified Ni/Al2O3 catalysts. The metal modifiers were Co, Cu, Zr, Mn, Mo, Ti, Ag and Sn. Relative to unmodified Ni/Al2O3, catalysts modified with Co, Cu and Zr showed slightly improved activity, while other promoters reduced the activity of CO2 reforming. Mn-promoted catalyst showed a remarkable reduction in coke deposition, while entailing only a small reduction in catalytic activity compared to unmodified catalyst. The catalysts prepared at high calcination temperatures showed higher activity than those prepared at low calcination temperature. The Mn-promoted catalyst showed very low coke deposition even in the absence of diluent gas and the activity changed only slightly during 100 h operation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Hydrogen (H2) is expected to become an important fuel for the future to be used as an energy carrier in automobiles and electric power plants. A promising route for H2 production involves catalytic reforming of a suitable primary fuel such as methanol or ethanol. Since ethanol is a renewable raw material and can be cheaply produced by the fermentation of biomass, the ethanol reforming for H2 production is beneficial to the environment. In the present study, the steam reforming of ethanol in the presence of added O2, which in the present study is referred to as oxidative steam reforming of ethanol (OSRE), was performed for the first time over a series of CuNiZnAl mixed oxide catalysts derived from layered double hydroxide (LDH) precursors. The effects of Cu/Ni ratio, temperature, O2/ethanol ratio, contact time, CO co-feed and substitution of Cu/Ni by Co were investigated systematically in order to understand the influence of these parameters on the catalytic performance. An ethanol conversion close to 100% was noticed at 300 °C over all the catalysts. The Cu-rich catalysts favor the dehydrogenation of ethanol to acetaldehyde. The addition of Ni was found to favor the C–C bond rupture, producing CO, CO2 and CH4. Depending upon the reaction condition, a H2 yield between 2.5 and 3.5 moles per mole of ethanol converted was obtained. A CoNi-based catalyst exhibited better catalytic performance with lower selectivity of undesirable byproducts, namely CH3CHO, CH4 and CO.  相似文献   

18.
B.S. Liu  C.T. Au 《Catalysis Letters》2003,85(3-4):165-170
A stable La2NiO4 catalyst active in CH4/CO2 reforming has been prepared by a sol–gel method. The catalyst was characterized by techniques such as XRD, BET, TPR and TG/DTG. The results show that the conversions of CH4 and CO2 in CH4/CO2 reforming over this catalyst are significantly higher than those over a Ni/La2O3 catalyst prepared by wet impregnation and those over a La2NiO4/-Al2O3 catalyst. The TG/DTG outcome confirmed that the amount of carbon deposition observed in the former case was less than that observed in the latter two cases, a phenomenon attributable to the uniform dispersion of nanoscale Ni particles in the sol–gel-generated La2NiO4 catalyst.  相似文献   

19.
Steam reforming (SR) and oxidative steam reforming (OSR) of ethanol were investigated over undoped and Cu, Co and Ca doped Ni/CeO2–ZrO2 catalyst in the temperature range of 400–650 °C. The nickel loading was kept fixed at 30 wt.% and the loading of Cu and Co was varied from 2 to 10 wt% whereas the Ca loading was varied from 5 to 15 wt.%. The catalysts were characterized by various techniques, such as surface area, temperature programmed reduction, X-Ray diffraction and H2 chemisorption. For Cu and Co doped catalyst, CuO and Co3O4 phases were detected at high loading whereas for Ca doped catalyst, no separate phase of CaO was found. The reducibility and the metal support interactions were different for doped catalysts and varied with the amount and nature of dopants. The hydrogen uptake, nickel dispersion and nickel surface area was reduced with the metal loading and for the Co loaded catalysts the dispersion of Ni and nickel surface area was very low. For Cu and Ca doped catalysts, the activity was increased significantly and the main products were H2, CO, CH4 and CO2. However, the Co doped catalysts showed poor activity and a relatively large amount of C2H4, C2H6, CH3CHO and CH3COCH3 were obtained. For SR, the maximum enhancement in catalytic activity was obtained with in the order of NCu5. For Cu–Ni catalysts, CH3CHO decomposition and reforming reaction was faster than ethanol dehydrogenation reaction. Addition of Cu and Ca enhanced the water gas shift (WGS) and acetaldehyde reforming reactions, as a result the selectivity to CO2 and H2 were increased and the selectivity to CH3CHO was reduced significantly. The maximum hydrogen selectivity was obtained for Catalyst N (93.4%) at 650 °C whereas nearly the same selectivity to hydrogen (89%) was obtained for NCa10 catalyst at 550 °C. In OSR, the catalytic activity was in the order N > NCu5 > NCa15 > NCo5. In the presence of oxygen, oxidation of ethanol was appreciable together with ethanol dehydrogenation. For SR reaction, the highest hydrogen yield was obtained on the undoped catalyst at 600 °C. However, with calcium doping the hydrogen yields are higher than the undoped catalyst in the temperature range of 400–550 °C.  相似文献   

20.
CO2 reforming of methane was performed on Pt/ZrO2 and Pt/Ce-ZrO2 catalysts at 1073K under different reactions conditions: (i) atmospheric pressure and CH4:CO2 ratio of 1:1 and 2:1; (ii) in the presence of water and CH4:CO2 ratio of 2:1; (iii) under pressure (105 and 190 psig) and CH4:CO2 ratio of 2:1. The Pt supported on ceria-promoted ZrO2 catalyst was more stable than the Pt/ZrO2 catalyst under all reaction conditions. We ascribe this higher stability to the higher density of oxygen vacancies on the promoted support, which favors the cleaning mechanism of the metal particle. The increase of either the CH4:CO2 ratio or total pressure causes a decrease in activity for both catalysts, because under either case the rate of methane decomposition becomes higher than the rate of oxygen transfer. The Pt/Ce-ZrO2 catalyst was always more stable than the Pt/ZrO2 catalyst, demonstrating the important role of the support on this reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号