首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The basic types of optically active erbium centers that make the major contribution to the photo-luminescence signal from the Si/Si1 ? x Ge x :Er heterostructures with the Ge content from 10 to 30% are analyzed in detail. It is shown that the origin of the optically active centers containing Er3+ ions correlates with the molar composition of the Si1 ? x Ge x :Er layer and the content of oxygen impurity in the layer. The major contribution to the photoluminescence signal from the Si/Si1 ? x Ge x :Er heterostructures with the Ge content below 25% is made by the well-known centers containing Er3+ ions and oxygen. An increase in the Ge content in the Si1 ? x Ge x :Er layer (x ≥ 25%) yields the formation of a new type of centers, specifically, the Gecontaining optically active erbium centers unobserved in the Si-based structures previously.  相似文献   

2.
Multiple implantation of oxygen ions with energies of 0.1–1.5 MeV at doses of 7 × 1013?2 × 1014 cm?2 and subsequent annealing in a chlorine-containing atmosphere at 900°C for 4 h give rise to dislocation-related luminescence in p-Si. A pn conductivity-type conversion is also observed in this case in the surface layer of Si, which indicates that electrically active donor centers are formed in the process. Preliminary heat treatment of wafers covered with an erbium-doped film of tetraethoxysilane (TEOS) in argon at 1250°C for 1 h does not preclude the appearance of dislocation-related luminescence, but affects the parameters of the dislocation-related lines (peak positions and intensities).  相似文献   

3.
The possibility of using the normal skin effect in dielectric waveguides for long-wavelength radiation is analyzed. A design of a waveguide integrated with a heterolaser is suggested, in which an undoped layer of GaAs is clad between heavily-doped n- and p-Al x Ga1 ? x As alloy layers, reflecting radiation because of the normal skin effect. It is shown that an efficient waveguide can be formed using n-Al x Ga1 ? x As layers with x < 0.45 and the electron concentration N > 5 × 1018 cm?3 and p-Al x Ga1 ? x As layers of any composition with the hole concentration P ≥ 3 × 1019 cm?3.  相似文献   

4.
The diffusion of magnesium impurity in the temperature range T = 600–800°C in dislocation-free single-crystal silicon wafers of p-type conductivity is studied. The surface layer of the wafer doped with magnesium by the ion implantation technique serves as the diffusion source. Implantation is carried out at an ion energy of 150 keV at doses of 5 × 1014 and 2 × 1015 cm–2. The diffusion coefficient of interstitial magnesium donor centers (D i ) is determined by measuring the depth of the p–n junction, which is formed in the sample due to annealing during the time t at a given T. As a result of the study, the dependence D i (T) is found for the first time. The data show that the diffusion process occurs mainly by the interstitial mechanism.  相似文献   

5.
Iodine-doped CdTe and Cd1?x Mg x Te layers were grown by molecular beam epitaxy. Secondary ion mass spectrometry characterization was used to measure dopant concentration, while Hall measurement was used for determining carrier concentration. Photoluminescence intensity and time-resolved photoluminescence techniques were used for optical characterization. Maximum n-type carrier concentrations of 7.4 × 1018 cm?3 for CdTe and 3 × 1017 cm?3 for Cd0.65Mg0.35Te were achieved. Studies suggest that electrically active doping with iodine is limited with dopant concentration much above these values. Dopant activation of about 80% was observed in most of the CdTe samples. The estimated activation energy is about 6 meV for CdTe and the value for Cd0.65Mg0.35Te is about 58 meV. Iodine-doped samples exhibit long lifetimes with no evidence of photoluminescence degradation with doping as high as 2 × 1018 cm?3, while indium shows substantial non-radiative recombination at carrier concentrations above 5 × 1016 cm?3. Iodine was shown to be thermally stable in CdTe at temperatures up to 600°C. Results suggest iodine may be a preferred n-type dopant compared to indium in achieving heavily doped n-type CdTe.  相似文献   

6.
The reflection spectra of n-MnxHg1?xTe single crystals and epitaxial layers were measured at 300 K. The effective electron mass was determined for the samples with x=0.06–0.10 and an electron concentration N>6×1016 cm?3. The calculated values of effective electron mass are close to experimental values.  相似文献   

7.
Relations that make it possible to use an experimentally measured temperature dependence of carrier concentration to determine the Hubbard energy U and temperature dependence of the Fermi level F for two-electron tin centers in lead selenide are derived. A study of Pb1?x?ySnxNaySe solid solutions shows that their Fermi level in the temperature region 100–600 K lies below the valence band top E v and that their F(T) dependences are linear, with extrapolation to T = 0 yielding E V ?F = 210±10 meV. The Hubbard energy of the two-electron tin centers in PbSe is found to be U = ?80±20 meV.  相似文献   

8.
Processes of chemical vapor deposition (CVD) of metal and dielectric (high-k and low-k) films with the help of unconventional initial reagents (volatile complex and organoelement compounds) were developed. Complex investigation of the chemical and phase composition and structure of (HfO2)1 ? x (Me 2O3) x double oxides (where Me = Al, Sc), and silicon carbonitrides and oxycarbonitrides was carried out. It was shown that the resulting materials enjoy a number of unique functional properties, which makes them promising for application in micro-, nano-, and optoelectronic devices.  相似文献   

9.
The distributions of hydrogen-containing donors in Ge1–xSix (0 ≤ x ≤ 0.06) alloys implanted with hydrogen ions with an energy of 200 and 300 keV and a dose of 1 × 1015 cm–2 are studied. It is established that, at the higher ion energy, the limiting donor concentration after postimplantation heat treatment (275°C) is attained within ~30 min and, at the lower energy, within ~320 min. In contrast to donors formed near the surface, a portion of hydrogen-containing donors formed upon the implantation of ions with the higher energy possess the property of bistability. The limiting donor concentration is independent of the ion energy, but decreases from 1.3 × 1016 to 1.5 × 1015 cm–3, as the Si impurity content in the alloy is increased from x = 0.008 to x = 0.062. It is inferred that the observed differences arise from the participation of the surface in the donor formation process, since the surface significantly influences defect-formation processes involving radiation-induced defects, whose generation accompanies implantation.  相似文献   

10.
The Seebeck coefficient and the electrical and thermal conductivities (S, σ, and κ) of ternary PbTe1?xSex (x=0.1 and 0.3) and quaternary PbTe1?2xSexSx (x=0.025, 0.05, 0.1, and 0.15) solid solutions have been studied. Polycrystalline samples with an electron density of (0.5–5.0)×1018 cm?3 were used; their quality was monitored by comparing the measured and calculated mobility values at 85 K. A considerable decrease in mobility and an anomalous trend in the σ(T) curve near 77 K were revealed in quaternary alloys with x?0.1; for x=0.15, unusual behavior of κ(T) was also found. According to estimates, the lattice thermal conductivity of this material is temperature-independent in the 80-to 300-K temperature range. This means that a reduction in phonon-phonon scattering with an increase in temperature is completely compensated by an increase in the scattering on impurities. The observed anomalies of σ(T) and κ(T) are considered assuming the possible of off-center location of sulfur atoms at the lattice sites. The thermoelectric figure of merit Z of the studied alloys has been determined in the range 80–300 K. In spite of decreasing mobility, the maximum Z was obtained in a quaternary compound with x=0.1: at 300 K, Zmax=2×10?3 K?1 with a carrier density of ~3×1018 cm?3; at 175 K, Zmax=1.5×10?3 K?1 with the density decreasing to 5×1017 cm?3. The obtained data indicate that the introduction of off-center impurities rises Z at T?300 K.  相似文献   

11.
The effect of oxygen on the intensity of erbium photoluminescence at λ=1.54 μm in amorphous a-SiOx:H(Er) films formed by dc magnetron sputtering was studied. The oxygen content in the gaseous phase ranged from 0.1 to 12 mol %, with other parameters of deposition remaining constant. Analysis of an a-Si:(H, Er, O) system showed that the range of homogeneity of amorphous a-SiOx:H(Er) is retrograde (T=const). The range of homogeneity can be conventionally divided into two portions, each of which should contain either of two differently charged [Er-O] n and [Er-O-Si-O] m clusters (m>n). This inference is confirmed experimentally: in the range of oxygen concentrations amounting to 5.5–8 mol % in the plasma, unusual associative processes take place probably directly above the growing film surface; these processes are caused by the appearance of [Er-O-Si-O] m clusters in the plasma and at the surface. It is these processes that account for the intensification of erbium photoluminescence as the oxygen content increases above 5.5 mol %. __________ Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 37, No. 7, 2003, pp. 853–859. Original Russian Text Copyright ? 2003 by Undalov, Terukov, Gusev, Kudoyarova.  相似文献   

12.
The parameters of multilayer CdxHg1–xTe heterostructures for photodetectors operating at wavelengths of up to 5 μm, grown by molecular-beam epitaxy (MBE) on silicon substrates, are studied. The passivating properties of thin CdTe layers on the surface of these structures are analyzed by measuring the C–V characteristics. The temperature dependences of the minority carrier lifetime in the photoabsorption layer after growth and thermal annealing are investigated. Samples of p +n-type photodiodes are fabricated by the implantation of arsenic ions into n-type layers, doped with In to a concentration of (1–5) × 1015 cm–3. The temperature dependences of the reverse currents are measured at several bias voltages; these currents turn out to be almost two orders of magnitude lower than those for n +p-type diodes.  相似文献   

13.
Capture centers (traps) are studied in silicon-on-insulator (SOI) structures obtained by bonding and hydrogen-induced stratification. These centers are located at the Si/SiO2 interface and in the bulk of the split-off Si layer. The parameters of the centers were determined using charge deep-level transient spectroscopy (Q-DLTS) with scanning over the rate window at fixed temperatures. Such a method allows one to study the traps near the Si midgap at temperatures near 295 K. It is shown that the density of traps with a continuous energy spectrum, which are located at the bonded Si/SiO2 interface, decreases by more than four orders of magnitude at the mid-gap compared with the peak density observed at the activation energy E a ≈0.2–0.3 eV. The capture centers are also found in the split-off Si layer of the fabricated SOI structures. Their activation energy at room temperature is E a =0.53 eV, the capture cross section is 10?19 cm2, and the concentration is (0.7–1.7)×1013 cm?3. It is assumed that these capture centers are related to deep bulk levels induced by electrically active impurities (defects) in the split-off Si layer close to the Si/SiO2 interface.  相似文献   

14.
The effect of the oxygen content (\(C_{O_2 } \)) in the gas mixture (20% of SiH4 + 80% of Ar) + O2 and the surface area of an erbium target (SEr) on the composition and Er3+ photoluminescence of amorphous a-SiOx:(H, Er, O) films prepared by dc magnetron sputtering has been investigated. Analysis of the experimental data shows that [Er-O] and [Er-O-Si-O] clusters are formed in the gas plasma due to the competing processes of oxidation and sputtering of Si and Er targets and to the interaction of [Si-O] and [Er-O] clusters with each other and with the oxygen in the gas phase. The discontinuities in the dependences of the contents of erbium-bound oxygen and erbium in a film, and N O Er-O and NEr = f(\(C_{O_2 } \), SEr), at \(C_{O_2 } \) ≈ (5–6.5) mol % supports the hypothesis on the existence of different erbium clusters. The necessary conditions for preparing a-SiOx:(H, Er, O) films with the highest photoluminescence intensity of erbium ions at a wavelength of 1.54 μm are determined.  相似文献   

15.
The distribution of charged centers N(w), quantum efficiency, and electroluminescence spectra of blue and green light-emitting diodes (LED) based on InGaN/AlGaN/GaN p-n heterostructures were investigated. Multiple InGaN/GaN quantum wells (QW) were modulation-doped with Si donors in GaN barriers. Acceptor and donor concentrations near the p-n junction were determined by the heterodyne method of dynamic capacitance to be about N A ≥ 1 × 1019 cm?3 ? N D ≥ 1 × 1018 cm?3. The N(w) functions exhibited maxima and minima with a period of 11–18 (±2–3 nm) nm. The energy diagram of the structures has been constructed. The shifts of spectral peaks with variation of current (J=10?6–3×10?2 A) are smaller (13–12 meV for blue and 20–50 meV for green LEDs) than the corresponding values for the diodes with undoped barriers (up to 150 meV). This effect is due to the screening of piezoelectric fields in QWs by electrons. The dependence of quantum efficiency on current correlates with the charge distribution and specific features in the current-voltage characteristics.  相似文献   

16.
The method of deep level transient spectroscopy is used to study electrically active defects in p-type silicon crystals irradiated with MeV electrons and α particles. A new radiation-induced defect with the properties of bistable centers is determined and studied. After keeping the irradiated samples at room temperature for a long time or after their short-time annealing at T ~ 370 K, this defect does not display any electrical activity in p-type silicon. However, as a result of the subsequent injection of minority charge carriers, this center transforms into the metastable configuration with deep levels located at EV + 0.45 and EV + 0.54 eV. The reverse transition to the main configuration occurs in the temperature range of 50–100°C and is characterized by the activation energy ~1.25 eV and a frequency factor of ~5 × 1015 s–1. The determined defect is thermally stable at temperatures as high as T ~ 450 K. It is assumed that this defect can either be a complex of an intrinsic interstitial silicon atom with an interstitial carbon atom or a complex consisting of an intrinsic interstitial silicon atom with an interstitial boron atom.  相似文献   

17.
Deep-level transient spectroscopy is used to study the formation of complexes that consist of a radiation defect and a residual impurity atom in silicon. It is established that heat treatment of the diffused Si p+-n junctions irradiated with fast electrons lead to the activation of a residual Fe impurity and the formation of the FeVO (E0.36 trap) and FeV2 (H0.18 trap) complexes. The formation of these traps is accompanied by the early (100–175°C) stage of annealing of the main vacancy-related radiation defects: the A centers (VO) and divacancies (V2). The observed complexes are electrically active and introduce new electron (E0.36: E t e =E c -0.365 eV, σ n =6.8×10?15 cm2) and hole (H0.18: E t h =E v +0.184 eV, σ p =3.0×10?15 cm2) levels into the silicon band gap and have a high thermal stability. It is believed that the complex FeVO corresponds to the previously observed and unidentified defects that have an ionization energy of E t e =E c ?(0.34–0.37) eV and appear as a result of heat treatment of irradiated diffused Si p+-n junctions.  相似文献   

18.
A model of the formation of donor centers introduced by a combined implantation of Er+ and O+ ions into silicon with subsequent thermal annealing is developed. These centers are multiparticle erbium-oxygen complexes ErOn with n≥4. The competing process of formation of electrically inactive oxygen clusters is taken into account. The model makes it possible to describe the dependence of the activation coefficient for the donor centers on the implantation dose of oxygen ions and, also, the effects of the oxygen ion implantation and annealing temperature on the concentration profiles of the donor centers.  相似文献   

19.
Recent advances in growth of Hg1?x Cd x Te films on large-area (7 cm × 7.5 cm) CdZnTe (CZT) substrates is presented. Growth of Hg1?x Cd x Te with good uniformity on large-area wafers is achieved using a Riber 412 molecular beam epitaxy (MBE) tool designed for growth of Hg1?x Cd x Te compounds. The reactor is equipped with conventional CdTe, Te, and Hg sources for achieving uniform exposure of the wafer during growth. The composition of the Hg1?x Cd x Te compound is controlled in situ by employing a closed-loop spectral ellipsometry technique to achieve a cutoff wavelength (λ co) of 14 μm at 78 K. We present data on the thickness and composition uniformity of films grown for large-format focal-plane array applications. The composition and thickness nonuniformity are determined to be <1% over the area of a 7 cm × 7.5 cm wafer. The films are further characterized by Fourier-transform infrared spectroscopy, optical microscopy, and Hall measurements. Additionally, defect maps show the spatial distribution of defects generated during the epitaxial growth of the Hg1?x Cd x Te films. Microdefect densities are in the low 103 cm?2 range, and void defects are below 500 cm?2. Dislocation densities less than 5 × 105 cm?2 are routinely achieved for Hg1?x Cd x Te films grown on CZT substrates. HgCdTe 4k × 4k focal-plane arrays with 15 μm pitch for astronomical wide-area infrared imagers have been produced using the recently developed MBE growth process at Teledyne Imaging Sensors.  相似文献   

20.
It is shown by Mössbauer spectroscopy of the 119Sb(119m Sn) isotope that impurity antimony atoms in PbS, PbSe, and PbTe lattices are distributed between cation and anion sublattices. In n-type samples, the greatest part of antimony is located in the anion sublattice; in hole ones, in the cation sublattice. The tin atoms formed as a result of radioactive decay of 119Sb (antisite state) are electrically inactive in the anion sub-lattice of PbS and PbSe, while, in the cation sublattice, they form donor U ? centers. Electron exchange between the neutral and doubly ionized tin U ? centers via the allowed band states is observed. The tin atoms formed after radioactive decay of 119Sb are electrically inactive in the anion and cation sublattices of PbTe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号