首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
为了研究不同腐蚀条件下2024铝合金的疲劳性能,首先设计搭建原位腐蚀疲劳平台,然后分别进行无腐蚀疲劳、预腐蚀疲劳和原位腐蚀疲劳实验,分析不同腐蚀疲劳条件下2024铝合金的疲劳断裂行为,最后利用扫描电镜(SEM)表征宏、微观断口特征,探究失效机理。结果表明:相同腐蚀环境和时间下,预腐蚀和原位腐蚀疲劳寿命分别为无腐蚀疲劳寿命的92%和42%;在原位腐蚀疲劳条件下,滑移带挤入、挤出导致表面粗糙度增加,吸附较多腐蚀介质,加剧蚀坑演化,易于裂纹萌生并形成多个裂纹源。裂纹的连通形成更大尺寸的损伤,并在材料内部快速扩展。预腐蚀和原位腐蚀疲劳试件断口观察到大量脆性疲劳条带,并且原位腐蚀疲劳条带平均间距约为无腐蚀疲劳条带间距的2倍,说明原位腐蚀疲劳条件下裂纹扩展速率更快。  相似文献   

2.
预腐蚀铝合金典型螺栓单搭接件疲劳寿命研究   总被引:1,自引:0,他引:1  
模拟飞机服役环境,对航空LY12 铝合金板材典型螺栓单搭接试验件做了预腐蚀试验,然后通过疲劳试验得到了未腐蚀试验件和预腐蚀后试验件的疲劳寿命。通过对试验件分解检查,分析了腐蚀对航空LY12 铝合金典型螺栓单搭接件的影响。建立了考虑腐蚀影响的基于断裂力学的沉孔螺栓搭接件疲劳寿命计算模型,对预腐蚀搭接件的疲劳寿命进行了计算和分析。结果表明:螺栓孔附近和搭接面腐蚀较表面其他部位严重,腐蚀产物的膨胀作用下产生了“枕垫效应”;计算模型得到的疲劳寿命与试验寿命吻合较好,其中模型1 最大相对误差为36.7%,模型2 的最大相对误差为25.7%。搭接件不同的腐蚀程度要选择不同的计算模型才能得出精确的结果。在分析较严重的腐蚀对搭接件疲劳寿命影响时,应考虑搭接面的多腐蚀损伤。  相似文献   

3.
基于有限元理论并结合局部应力应变法, 得到了确定尺寸腐蚀坑底部在疲劳载荷作用下产 生非扩展裂纹的萌生寿命值;采用断裂力学模型 通过求解数值积分和非线性方程,得到了微裂纹 扩展到极限尺寸的寿命值和等效裂纹的尺寸;采 用神经网络技术建立了腐蚀坑尺寸与等效裂纹尺 寸之间的非线性映射关系。  相似文献   

4.
周松  王磊  马闯  杨林青  许良  回丽 《材料工程》2016,(6):98-103
基于航空铝合金带孔结构材料在服役过程中常因腐蚀损伤而导致疲劳断裂问题,通过对未腐蚀和预腐蚀24h后的7075铝合金双孔未倒角和双孔倒角试样进行疲劳实验研究,分析腐蚀预损伤和孔边倒角对试件疲劳性能的影响及疲劳断裂特性差异。结果表明:腐蚀预损伤对7075铝合金材料疲劳寿命的影响显著,双孔未倒角和倒角试样预腐蚀24h后试样中值疲劳寿命比未腐蚀试样最大下降了31.74%和26.92%;孔边倒角对材料疲劳寿命有一定的影响,未腐蚀和预腐蚀24h孔边倒角试样中值疲劳寿命比未倒角试样最大下降了28.02%和15.36%,主要原因是由于孔边倒角过程中产生加工刀痕,引入了"预损伤",且倒角后疲劳裂纹萌生位置变多,导致材料发生疲劳断裂的概率变大。  相似文献   

5.
通过盐雾环境条件下的预腐蚀疲劳试验测试2198-T8铝锂合金的疲劳寿命,并基于蚀坑形貌对腐蚀疲劳寿命进行了预测。结果表明,在同一腐蚀环境参数下,蚀坑的长度、宽度及深度均满足对数正态分布。将蚀坑形貌简化为半椭球状的几何模型,与试验寿命数据相结合,通过ABAQUS有限元模拟、数字图像相关裂纹监控技术和理论计算,得到蚀坑深度与等效初始裂纹长度之间的等价关系,最后使用Paris公式对不同参数下的预腐蚀疲劳试样进行寿命预测,预测结果均处于1.5倍分散带以内。  相似文献   

6.
基于编制的机场环境加速试验谱,针对关键结构高强度铝合金件进行当量腐蚀试验,在实验室条件下成功地模拟和再现了服役环境条件的腐蚀损伤,借助复型法观测得到了腐蚀损伤的演化规律;通过预腐蚀疲劳试验和疲劳断口扫描电镜定量分析,得到了裂纹长度a与循环次数N数据集,分析了裂纹扩展速率da/d N与应力强度因子幅值ΔK的对应关系,定量表征了不同程度腐蚀损伤对疲劳裂纹扩展行为的影响规律.结果表明,在腐蚀初期,疲劳裂纹扩展过程中有经典的小裂纹扩展阶段;随着腐蚀损伤的加重,小裂纹行为不明显;腐蚀损伤越严重,疲劳裂纹扩展速率越快,结构抗疲劳性能显著退化.  相似文献   

7.
超声深滚处理改善预腐蚀7A52-CZ铝合金疲劳性能机理   总被引:1,自引:0,他引:1  
研究了超声深滚(UDR)处理对预腐蚀7A52-CZ铝合金疲劳性能的作用.7A52铝合金试样在剥蚀腐蚀溶液中浸泡不同时间后进行了超声深滚处理.分别对未腐蚀试样、腐蚀试样和腐蚀+UDR处理试样进行了疲劳试验,用XRD应力测试和扫描电镜等方法分析了UDR处理前后试样的残余应力和断口形貌,并对疲劳断口进行了分析.结果表明:UDR处理在铝合金中引入超过1mm深的残余压应力层,延长了7A52的预腐蚀疲劳寿命.对于腐蚀较轻的试样,UDR处理使裂纹源在表层下残余压应力和拉应力过渡区产生,延长了疲劳裂纹萌生寿命;对腐蚀较重试样,疲劳裂纹仍从晶间腐蚀处形核,但由于引入残余压应力及腐蚀裂纹的部分愈合效应,仍在很大程度上改善了7A52的预腐蚀疲劳寿命.  相似文献   

8.
对预腐蚀2XXX铝合金Kt=1和Kt=3试样进行了实验室空气环境和油箱积水环境下的疲劳寿命实验,并用单侧容限因数法对疲劳安全寿命进行了估算,得到了预腐蚀2XXX铝合金在这两种环境下的中值疲劳寿命和99%可靠度95%置信度水平上的安全疲劳寿命。油箱积水环境显著降低了预腐蚀2XXX铝合金的疲劳性能,实验室空气环境下的疲劳寿命数据比较分散,应力水平越低越分散,而油箱积水环境下的疲劳寿命数据比较集中。油箱积水环境下的腐蚀主要由电化学腐蚀和微生物腐蚀组成。  相似文献   

9.
针对大面积片状腐蚀缺陷导致管道破坏的问题,利用ABAQUS软件并结合实际数据,建立不同腐蚀条件下的腐蚀管道模型,采用正交试验法对其应力状态进行分析,将模拟结果与API579准则结果进行比较,验证其准确性.结果 表明:腐蚀长度、宽度、深度均对带大面积腐蚀缺陷管道的应力状态产生影响,其中腐蚀深度的影响最为显著,腐蚀长度的影响最小;腐蚀宽度在40°~80°范围内对管线的应力状态影响较大,当腐蚀宽度超过80°时,应力变化趋于稳定;不同腐蚀尺寸参数对管线的应力状态影响程度不同,其中腐蚀深度影响最大,所以在进行管线补强、剩余寿命预估及安全评估时,要重点考虑腐蚀深度的影响.  相似文献   

10.
利用扫描电镜联合液压伺服试验机,并借助于Walker公式研究了应力比对预腐蚀不同时间航空高强LD2CZ铝合金疲劳裂纹扩展的影响,在应力比分别为0.05,0.5,0.7的条件下对预腐蚀0,15,30d的LD2CZ铝合金单边缺口板状试样进行了疲劳加载试验,得到了其疲劳裂纹扩展速率曲线,并拟合出了Walker公式中的材料常数。结果表明:裂纹扩展速率会随着应力比的增加以及腐蚀损伤的加深而增大,拟舍得到的Walker公式可用来定量化地表征应力比和腐蚀损伤对疲劳裂纹扩展速率的影响。  相似文献   

11.
This paper is focused on the effect of sea water corrosion on the gigacycle fatigue strength of a martensitic–bainitic hot rolled steel R5 used for manufacturing off-shore mooring chains for petroleum platforms in the North Sea. Crack initiation fatigue tests in the regime of 106 to 1010 cycles were carried out on smooth specimens under three different environment conditions: (i) without any corrosion (virgin state) in air, (ii) in air after pre-corrosion, and (iii) in-situ corrosion-fatigue under artificial sea water flow. A drastic effect of sea water corrosion was found: the median fatigue strength beyond 108 cycles is divided by 5 compared to virgin state specimens. The crack initiation sites were corrosion pits caused by pre-corrosion or created during corrosion-fatigue under sea water flow. Furthermore some sub-surface and internal crack initiations were observed on specimens without any corrosion (virgin state). Crack propagation curves were obtained in mode I in air and under sea water flow. Calculation of the stress intensity factor at the tip of cracks emanating from hemispherical surface pits combined with the Paris–Hertzberg–Mc Clintock crack growth rate model showed that fatigue crack initiation period represents most of the fatigue life in the VHCF regime. Additional original experiments have shown physical evidences that the fatigue strength in the gigacycle regime under sea water flow is mainly governed by the corrosion process with a strong coupling between cyclic loading and corrosion.  相似文献   

12.
This paper is devoted to the effect of corrosion on the gigacycle fatigue strength of a martensitic-bainitic hot rolled steel used for manufacturing offshore mooring chains for petroleum platforms. Smooth specimens were tested under fully reversed tension between 106 and 1010 cycles in three testing conditions and environments: (i) in air, (ii) in air after pre-corrosion and (iii) in air under real time artificial sea water flow. The fatigue strength at greater than 108 cycles is reduced by a factor more than five compared with non-corroded specimens. Fatigue cracks initiate at corrosion pits due to pre-corrosion, if any, or pits resulting from corrosion in real time during the cyclic loading. It is shown that under sea water flow, the fatigue life in the gigacycle regime is mainly governed by the corrosion process. Furthermore, the calculation of the mode I stress intensity factor at hemispherical surface defects (pits) combined with the Paris-Hertzberg-Mc Clintock crack growth rate model shows that fatigue crack initiation regime represents most of the fatigue life.  相似文献   

13.
This paper focuses on conducting lifetime performance assessment and management of aging steel bridges under fatigue by integrating three prediction models: fatigue reliability model (FRM), crack growth model (CGM), and probability of detection (PoD) model. A novel approach using these models is proposed for planning interventions on fatigue sensitive structures. Based on information from field monitoring and/or non-destructive evaluation, prediction models are developed to (a) estimate the time-dependent fatigue performance using FRM, (b) provide the time-dependent crack growth using CGM, and (c) quantify the detection capability associated with fatigue cracks using PoD model. In order to assess and manage bridge fatigue life, the three models are combined based on two parameters (i.e., number of cycles, crack size). As an illustration, the combined approach is used for fatigue assessment and management of an existing bridge.  相似文献   

14.
A significant part of the fatigue life is spent during short crack growth. Therefore, modelling of short fatigue crack growth offers an opportunity to improve the accuracy of numerical life assessment. Besides stating some general remarks on the short crack approach itself and on multiaxial fatigue criteria, a short crack growth based fatigue life prediction approach for multiaxial non‐proportional loading is presented. This approach accounts for the geometrical size effect by considering the geometry correction functions for semi‐elliptical surface cracks in inhomogeneous gradient stress fields. The geometrical size effect is becoming significant for notch radii smaller than four times the defined technical crack size. Additionally, life influencing factors due to the statistical size effect have been taken into account. The comparison of calculated and experimentally observed fatigue lives of shouldered shafts made of S460N with notch radii of 0.2 to 4.0 mm under non‐proportional tension and torsion loading yields a satisfying accuracy.  相似文献   

15.
Corrosion damage can significantly reduce the service life of aluminum alloy structures and endanger the structural integrity of aircraft. Here, aiming at center-hole sheet specimens of aluminum alloy 7075-T6, uniaxial fatigue tests and post-fracture analysis are performed to investigate the effect of corrosion pits on the pre-corrosion fatigue behavior. Then the best correlated parameters between corrosion pits and equivalent cracks are identified through Pearson correlation analysis. It is found that for single-crack initiations arECS (equivalent crack depth 1 aspect ratio) vs. arcri (critical pit depth 1 aspect ratio) are best correlated with correlation coefficient of 0.9, while the best correlated parameters for multi-crack initiations are arECS (equivalent crack depth 1 aspect ratio) vs. rcri (aspect ratio) with correlation coefficient of 0.69. Equivalent crack size (ECS) models are correspondingly developed with these best correlated parameters for single- and multi-crack initiations, respectively. The pre-corrosion fatigue lives predicted with our models agree well with the experimental results and the maximum error factor is about 1.6.  相似文献   

16.
Conventionally, fatigue crack growth in aircraft structures under flight spectrum loading is often analysed and predicted based on crack growth rates obtained from constant-amplitude crack growth testing with cycle-by-cycle life prediction methods or models. Because the mechanism of fatigue crack growth under spectrum loading is yet to be fully understood, no matter how closely the models are able to account for the load interaction effects, the predictions generally have to be subjected to the validation by fatigue crack growth tests using either representative specimens or real structures under the representative flight spectrum. In view of this fact, it is not difficult to deduce that the predictions should be much more reliable if the predictions are made directly based on the flight spectrum crack growth data. Therefore, a new approach to fatigue crack growth life assessment has been proposed in this paper based on the analysis of flight-by-flight fatigue crack growth data measured by quantitative fractography for several common aircraft structural materials under various fighter aircraft flight spectra. Quantitative fractography was successfully used for titanium coupons to generate crack growth curves under flight spectrum loading. The crack growths were also shown to be exponential. As a demonstration, the flight-by-flight approach was used to determine fatigue crack growth lives of aircraft aft fuselage frames under a fighter aircraft usage.  相似文献   

17.
The high cycle fatigue (HCF) and very high cycle fatigue (VHCF) properties of a case-carburized gear steel were investigated under tension and compression, and the distribution characteristics of defect size was analyzed using four statistical functions including Statistics of Extreme Values (SEV), Generalized Pareto distribution (GP), Generalized Extreme Values (GEV) and Exponential Generalized Pareto distribution (EXPGP). Results show that the interior inclusion-induced failure with the existence of fisheye becomes the predominant failure mode in HCF and VHCF regimes. With the increasing of applied stress amplitude, the effect of crack size within the fisheye on fatigue life is gradually reduced. Based on this, a fatigue strength prediction model associated with the variation of crack size was developed. At a given probability, the predicted fatigue strength is the highest by the estimated maximum inclusion size using the GEV distribution, then followed by using Gumbel distribution and by using GP distribution, and the lowest by using EXPGP distribution, which is inversely proportional to the evaluated maximum inclusion sizes. Based on the good agreement between the predicted and experimental results, the proposed approach based on statistical evaluation of defect size can be well used to predict the HCF and VHCF fatigue lives with interior fisheye failure.  相似文献   

18.
Fatigue crack formation and growth from localized corrosion in Al-Zn-Mg-Cu   总被引:1,自引:0,他引:1  
The effect of precorrosion on the fatigue life of aluminum alloy 7075-T6511 was measured, physical characteristics of corrosion topography plus fatigue damage were established by microscopy, and a corrosion modified equivalent initial flaw size (CM-EIFS) was established using fracture mechanics modeling. Fatigue life is reduced by clustered corrosion pits on the L-S surface from laboratory-EXCO exposure. Cracks initiate from pits clustered as a semi-elliptical surface micronotch rather than the deepest pits, consistent with shape-dependent stress intensity. Marker band analysis establishes that the number of cycles to form a crack about a pit cluster can be a significant fraction of total fatigue life. The CM-EIFS, back-calculated from fracture mechanics analysis of measured fatigue life, equals measured initiating-pit cluster size provided that important inputs are provided; such favorable comparison validates this approach to corrosion-fatigue interaction. Calculated CM-EIFS provides a metric to characterize alloy corrosion damage, and can be used to forward-model the effects of stress and loading environment on fatigue life distribution, critical for efficient alloy development. Use in prognosis of the fatigue performance of a service-corroded surface is hindered by uncertain non-destructive characterization of corrosion topography.  相似文献   

19.
The relationship between the distributions for the size of fatigue-initiating defects and fatigue life of 7050-T7451 thick plate and A356-T6 alloy castings reported previously in the literature were analyzed. Results showed that (i) the size of fatigue-initiating defects in all four datasets follow the Gumbel distribution, (ii) the fatigue life model based on the Paris-Erdoğan law for crack propagation provides respectable fits to fatigue life data, and (iii) the statistical distribution for fatigue life based on the Gumbel distribution of defect size and the fatigue life model provides excellent fits to all datasets, (iv) this statistical distribution for fatigue life performs better than the lognormal and Weibull distributions commonly used to model variability in fatigue life of aluminum alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号