首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y2O3 thin films were in-situ deposited by ion beam sputtering on Si substrate. The influence of the deposition parameters are studied by X-ray diffraction, electrical measurements and high resolution transmission electron microscopy observations. The stress sate of the oxide layers is investigated by the sin2ψ method as a function of the deposition parameters and the post-annealing treatments. Oxygen ion beam assisted deposition process or post-annealing of as-deposited thin films lead to the same relaxation of the internal compressive stress within the oxide layer. An SiO2 layer sandwiched between Si and Y2O3 is always observed and should play a role both in the growing process and electrical properties of the MOS structure based on Y2O3 oxide layer. The results are interpreted in terms of diffusional process in the oxide, which are directly related to the temperature and the oxygen partial pressure during the growth process.  相似文献   

2.
Polycrystalline Fe/Fe3O4 multilayers have been fabricated with varying Fe/Fe3O4 ratios, period (bilayer) thickness, number of periods, and deposition sequence. The films were deposited by RF magnetron sputtering. The coercivity was found to vary in a nonlinear fashion between that of Fe and Fe3 O4. For selected multilayer geometries, the coercivity can be increased beyond that of single-layer Fe and Fe3O4 films. The magnetic saturation was observed to follow a linear mixture rule. These results suggest that a multilayer approach is useful for designing magnetic thin films and may allow fabrication of new materials for recording media applications. A secondary result was the ability to obtain highly textured polycrystalline films of both Fe and Fe3O4 on amorphous substrates for selected multilayer geometries. The texture results, which may be generally applicable, suggest that relatively thin multilayers of only a few periods may provide a means to control polycrystalline film texture on amorphous substrates  相似文献   

3.
PbZr0.52Ti0.48O3/YBa2Cu3O7−δ (PZT/YBCO) thin films have been fabricated on Y2O3 stabilized zirconate (YSZ) substrates by a pulsed excimer laser deposition (PLD) method. In order to investigate total dose radiation effects on the Au/PZT/YBCO ferroelectric capacitor, the capacitance–voltage (C–V) curves and the retained polarization property of the capacitor have been measured before and after γ-ray irradiation. The results showed that, with an increased total dose, the retained polarization and the dielectric constant decreased, but the coercive field drifted towards positive voltage direction. This is caused by charges trapped by defects in the PZT capacitor during irradiation.  相似文献   

4.
Properties and applications as a pH sensor of Y2O3-doped CeO2 films prepared by r.f. magnetron sputtering were studied. The CeO2-Y2O3 films exhibited higher electric conductivity than yttria-stabilized zirconia. Films deposited on an MgO single-crystal (100) substrate without substrate heating had a more dense structure. The microstructure of the samples deposited at a substrate temperature of 873 K was shown to be columnar by scanning electron microscope. X-ray diffraction studies showed that a (111) diffraction peak assigned to CeO2 was much greater and the films exhibited preferential orientation to the (111) plane with increasing r.f. power or substrate temperature. The pH electrode was made by a double layer of Y2O3-doped CeO2 and Cu/Cu2O redox films deposited onto the MgO substrate. pH response was measured in various pH buffer solutions at room temperature. It showed good agreement with a nernstian response in the pH range 9–13.  相似文献   

5.
The heteroepitaxially grown yttrium oxide layer by an ionized cluster beam (ICB) on a Si(100) substrate was investigated by Rutherford backscattering spectrometry (RBS)/channeling. The channeling minimum value (χmin) of the Y2O3 layer on Si(100) is 0.28, and this is the smallest value among those reported. From the channeling polar plots, it is found that Y2O3 film grown on Si(100) oriented with (110) direction and has a double domain structure. The 110 axis of Y2O3 layer is exactly parallel to the 100 axis of the Si substrate. It is also observed that the interface region of Y2O3 film has more crystalline defects than the surface region.  相似文献   

6.
用电子束蒸发技术在K9玻璃及两种不同取向的钇铝石榴石(Y3Al5O12, 简称YAG)晶体上沉积了SiO2薄膜, 采用X射线衍射仪和纳米划痕仪对薄膜显微结构和力学性能进行了研究。实验结果表明: 薄膜在K9 、YAG(100) 和YAG(111)基底上分别呈现非晶态和多晶态; 沉积在不同基底上的薄膜的弹性模量并无明显差异; SiO2薄膜在K9和YAG基底上呈现不同的划痕破坏模式, 并且YAG晶体上薄膜的粘附失效临界附着力远远小于SiO2薄膜与K9基底的附着力。本文从薄膜的结构和弹性模量两方面分析解释了不同基底上薄膜的力学行为。  相似文献   

7.
颜建辉  康蓉  唐幸  汪异  邱敬文 《复合材料学报》2021,38(11):3747-3756
多相Mo-12Si-8.5B合金是一种很有应用前景的高温结构材料,为了同时提高Mo-12Si-8.5B合金的强度和韧性,提出了采用纳米ZrO2(Y2O3)强韧化具有双峰晶粒度分布Mo-12Si-8.5B复合材料的方法。首先采用溶胶-凝胶和高温氢还原法制备了纳米Mo-ZrO2(Y2O3)复合粉末,然后以纳米Mo-ZrO2(Y2O3)粉末和微米Mo粉末为原材料,采用放电等离子烧结(SPS)技术制备了具有双峰晶粒度分布的Mo-12Si-8.5B-ZrO2(Y2O3)复合材料。结果表明,随着ZrO2(Y2O3)含量的增加,制备的Mo-ZrO2(Y2O3)纳米粉末的粒度和烧结体相对致密度均逐渐减小,ZrO2(Y2O3)含量小于2.5wt%时,烧结体的相对致密度均大于98.1%。当ZrO2(Y2O3)含量为1.5wt%和2.5wt%时,复合材料具有较高的硬度(9.76~9.98 GPa),抗弯强度(672~678 MPa)和断裂韧性(12.68~12.82 MPa·m1/2)。Mo-12Si-8.5B-ZrO2(Y2O3)复合材料中Mo晶粒细化、粗细Mo晶粒的晶界强化和纳米ZrO2(Y2O3)颗粒第二相强化是提高硬度和抗弯强度主要原因;复合材料中粗晶粒Mo和纳米ZrO2(Y2O3)有助于断裂韧性的提高,材料的增韧机制主要是裂纹偏转和裂纹桥接。   相似文献   

8.
Samarium-doped ceria (SDC) thin films were prepared from Sm(DPM)3 (DPM = 2,2,6,6-tetramethyl-3,5-heptanedionato) and Ce(DPM)4 using the aerosol-assisted metal–organic chemical vapor deposition method. -Al2O3 and NiO-YSZ (YSZ = Y2O3-stabilized ZrO2) disks were chosen as substrates in order to investigate the difference in the growth process on the two substrates. Single cubic structure could be obtained on either -Al2O3 or NiO-YSZ substrates at deposition temperatures above 450 °C; the similar structure between YSZ and SDC results in matching growth compared with the deposition on -Al2O3 substrate. A typical columnar structure could be obtained at 650 °C on -Al2O3 substrate and a more uniform surface was produced on NiO-YSZ substrate at 500 °C. The composition of SDC film deposited at 450 °C is close to that of precursor solution (Sm : Ce = 1 : 4), higher or lower deposition temperature will both lead to sharp deviation from this elemental ratio. The different thermal properties of Sm(DPM)3 and Ce(DPM)4 may be the key reason for the variation in composition with the increase of deposition temperature.  相似文献   

9.
Absorption and emission spectra are given for Yb3+-doped Y2O3, Lu2O3 and Gd2O3 at room temperature. Y2O3 and Lu2O3 as close cubic matrices, show Yb3+ similar spectra different of Yb3+ in Gd2O3 monoclinic structure. Here, we use a new method to study and optimize the main spectroscopic properties with only one concentration gradient sample. Finally, assignments of Yb3+ Stark levels and Raman vibrations in Y2O3, Lu2O3 and Gd2O3 single crystal are given.  相似文献   

10.
Optically active Er3+:Yb3+ codoped Y2O3 films have been produced on c-cut sapphire substrates by pulsed laser deposition from ceramic Er:Yb:Y2O3 targets having different rare-earth concentrations. Stoichiometic films with very high rare-earth concentrations (up to 5.5 × 1021 at cm− 3) have been achieved by using a low oxygen pressure (1 Pa) during deposition whereas higher pressures lead to films having excess of oxygen. The crystalline structure of such stoichiometric films was found to worsen the thicker the films are. Their luminescence at 1.53 μm and up-conversion effects have been studied by pumping the Yb3+ at 0.974 μm. The highest lifetime value (up to 4.6 ms) is achieved in films having Er concentrations of ≈ 3.5 × 1020 at cm− 3 and total rare-earth concentration ≈ 1.8 × 1021 at cm− 3. All the stoichiometric films irrespective of their rare-earth concentration or crystalline quality have shown no significant up-conversion.  相似文献   

11.
Using a Zn3In2O6 target, indium-zinc oxide films were prepared by pulsed laser deposition. The influence of the substrate deposition temperature and the oxygen pressure on the structure, optical and electrical properties were studied. Crystalline films are obtained for substrate temperatures above 200°C. At the optimum substrate deposition temperature of 500°C and the optimum oxygen pressure of 10−3 mbar, both conditions that indeed lead to the highest conductivity, Zn3In2O6 films exhibit a transparency of 85% in the visible region and a conductivity of 1000 S/cm. Depositions carried out in oxygen and reducing gas, 93% Ar/7% H2, result in large discrepancies between the target stoichiometry and the film composition. The Zn/In (at.%) ratio of 1.5 is only preserved for oxygen pressures of 10−2–10−3 mbar and a 93% Ar/7% H2 pressure of 10−2 mbar. The optical properties are basically not affected by the type of atmosphere used during the film deposition, unlike the conductivity which significantly increases from 80 to 1400 S/cm for a film deposited in 10−2 mbar of O2 and in 93% Ar/7% H2, respectively.  相似文献   

12.
We have studied the surface termination of ZnO(0001¯) films grown on Al2O3 substrates with high epitaxial quality. The structural properties of the ZnO films were investigated by X-ray scattering, revealing a predominant (0001¯)ZnO out-of-plane texture with the [112¯0]ZnO[0001]Al2O3 and [112¯0]ZnO[101¯0]Al2O3 azimuthal orientations for (112¯0)Al2O3 and(0001)Al2O3 substrates, respectively. The surface termination was determined by X-ray photoemission spectroscopy (XPS) via pyridine (C5H5N) adsorption at the ZnO surface. XPS data recorded at different temperatures after exposure to pyridine revealed that for both orientations of the Al2O3 substrates the deposited ZnO films were terminated by oxygen atoms, i.e. corresponding to a ZnO (0001¯) surface.  相似文献   

13.
14.
W. Siefert 《Thin solid films》1984,120(4):275-282
Thin films of doped In2O3 and SnO2 were prepared by the “corona spray pyrolysis” technique with a deposition efficiency of 80%. The electrical and optical properties of the films were determined. A transmission of 88% in the visible region and an IR reflection of more than 90% were the maximum values obtainable for a doped In2O3 film.

A detailed discussion of the physical and chemical processes that occur during spray pyrolysis is presented to aid the understanding of this coating technique.

A minimum temperature of about 350°C for the formation of In2O3 was empirically confirmed.

Furthermore the powdery precipitate obtained during deposition of In2O3 was clearly identified as polycrystalline In2O3 formed by a homogeneous reaction.  相似文献   


15.
Pt-PtOx thin films were prepared on Si(100) substrates at temperatures from 30 to 700°C by reactive r.f. magnetron sputtering with platinum target. Deposition atmosphere was varied with O2/Ar flow ratio. The deposited films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. Resistively of the deposited films was measured by d.c. four probe method. The films mainly consisted of amorphous PtO and Pt3O4 (or Pt2O3) below 400°C, and amorphous Pt was increased in the film as a deposition temperature increased to 600°C. When deposition temperature was thoroughly increased, (111) oriented pure Pt films were formed at 700°C. Compounds included in the films strongly depended on substrate temperature rather than O2/Ar flow ratio. Electrical resistivity of Pt-PtOx films was measured to be from the order of 10−1 Ω cm to 10−5 Ω cm, which was related to the amount of Pt phase included in the deposited films.  相似文献   

16.
Epitaxial and polycrystalline barium hexaferrite BaFe12O19 thin films were prepared by metalorganic chemical vapour deposition (MOCVD). Films were grown by a liquid MOCVD technique which aim is to control precisely the precursor vapour pressures. Two kinds of substrates were used: sapphire (001) and silicon thermally oxidized. On Si/SiO2 films are polycrystalline and the magnetization is isotropic. On Al2O3 (001), structural studies reveal the films to be predominantly single phase, well crystallized without annealing procedure and with the c-axis perpendicular to the film plane; epitaxial relationships between the film and the substrate were determined. The magnetic parameters, deduced from vibrating sample magnetometer measurements, show a high dependence of the magnetization with the orientation of the field with respect to the surface of the film.  相似文献   

17.
针对Ti811钛合金硬度低、耐磨性差的问题,以TC4粉、Ni45A粉和Y2O3粉为原料,采用同轴送粉激光熔覆技术在Ti811钛合金表面进行了激光熔覆制备耐磨复合涂层的实验,分析了熔覆层的组织和相组成,测试了熔覆层的显微硬度和摩擦磨损等力学性能。研究表明:复合涂层组织由枝晶TiC、依附生长于枝晶TiC表面的纳米颗粒TiC、生长于基体表面的等轴球形(近球形)TiC、金属间化合物Ti2Ni、增强相TiB、TiB2及基体α-Ti组成,所有生成相呈均匀弥散分布状态;涂层中等轴球形(近球形)TiC和Y2O3构成了复合相结构,经二维点阵错配度计算表明,Y2O3的(111)晶面与TiC的(110)晶面的二维点阵错配度δ=6.54%,因此Y2O3可作为TiC的有效异质形核核心细化晶粒;涂层的显微硬度处于HV0.5 655~700之间,较Ti811基材提高了约1.6~1.8倍;涂层的磨损机制主要为磨粒磨损,摩擦磨损性能较基材显著提升。   相似文献   

18.
We fabricated L10 FePt thin films by sputtering in reactive oxygen on polycrystalline glass substrates, and we investigated the magnetic properties and crystallographic orientations of the films. Oxygen addition during the FePt deposition promoted heteoroepitaxial growth by decreasing the lattice misfit with the Ag underlayer. In an oxygen/argon ratio of 1.5-3.0 vol.%, the in-plane lattice parameter of the FePt films expanded, and the lattice misfit with the Ag underlayer decreased from 6.3 to 3.9% in the as-deposited state, as determined by grazing incidence X-ray diffraction (GIXRD). Annealing at 700degC for 1 min produced a heteroepitaxially grown L10 (001) texture with a large out-of-plane coercivity of 8.8 kOe and a nucleation field of kOe. Transmission electron microscopy showed that average grain size in the as-deposited films was about 4-5 nm and was in the range of 10-15 nm in the annealed films, indicating that there was some grain growth.  相似文献   

19.
Thin films (about 10 nm) of Y2O3 have been deposited by a Langmuir-Blodgett processing technique onto a variety of substrates: type 304 stainless steel, low carbon steel, titanium, zirconium and silicon. The substrates were afterwards oxidized in air at 800, 1000 (304 steel), 400 (low C steel), 500 (Ti), 450 (Zr) and 1000 (Si) °C. The effects of the film on the oxide scale thickness and the interaction between Y2O3 and the oxide of the substrate have been studied by ion backscattering. In stainless steel, the Y2O3 film reduces the oxidation rate by orders of magnitude and Y is distributed throughout the oxide scalw (1–10 at.% level). In other substrates, the effect on oxidation rate was less pronounced, but changes in the visual appearance often took place. The Y2O3 incorporation varied for the different substrates, and Y2O3 remained as a surface film in the cases of Ti and Si. Such films exhibited good adherence and could not be removed by wiping. The potential use of metal oxide thin films for surface analysis standards and diffusion marker studies is discussed.  相似文献   

20.
We report measurements of the energy transfer between Er3+ and Ce3+ in Y2O3. The transition between the Er3+ 4I11/2 and 4I13/2 excited states can be stimulated by energy transfer to Ce3+, augmenting the population in the 4I13/2 state at the expense of that in the 4I11/2 state. Experiments were performed on Y2O3 planar waveguides doped with 0.2 at.% erbium and 0–0.42 at.% cerium by ion implantation. From measurements of Er3+ decay rates as a function of cerium concentration we derive an energy transfer rate constant of 1.3×10−18 cm3/s. The efficiency of the energy transfer amounts to 0.47 at 0.42 at.% cerium. The energy transfer rate constant measured in Y2O3 is two times smaller for Er3+→Ce3+ than that for Er3+→Eu3+ in the same material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号