首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 511 毫秒
1.
Qbeta replicase, an RNA-dependent RNA polymerase of RNA coliphage Qbeta, is a heterotetramer composed of a phage-encoded beta-subunit and three host-encoded proteins: the ribosomal protein S1 (alpha-subunit), EF-Tu, and EF-Ts. Several purification methods for Qbeta replicase were described previously. However, in our efforts to improve the production of Qbeta replicase, a substantial amount of the beta-subunit overproduced in Escherichia coli cells was found as insoluble aggregates. In this paper, we describe two kinds of method of producing Qbeta replicase. In one kind, both EF-Tu and EF-Ts subunits were expressed with the beta-subunit, and in the other kind, the beta-subunit was genetically fused with EF-Tu and EF-Ts. The fused protein, a single-chain alpha-less Qbeta replicase, was mostly found in the soluble fraction and could be readily purified. These results pave the way for the large-scale production of the highly purified form of this enzyme.  相似文献   

2.
The kinetic properties of Qbeta replicase, an RNA-dependent RNA polymerase, were investigated experimentally. The reaction at the A-incorporation site was inhibited by UTP and CTP with inhibition constants of 3.2 and 2.7 mM, respectively, while the reactions at the U-, G-, and C-incorporation sites were inhibited by ATP with inhibition constants of 1.09, 1.25, and 1.48 mM, respectively. When nucleotide concentrations were low, C was incorporated at the fastest rate and G at the slowest. Accordingly, the G-incorporation step largely limits the overall reaction rate. From the obtained kinetic parameters, calculations showed that the optimum ratio of the concentrations of the four nucleotides could be achieved by increasing the ratio of GTP concentration with a concomitant decrease in the ratios of CTP and ATP concentrations. Consequently, a 60 to 140% increase in the reaction rate is expected as compared to the rate with equimolar ratio of the four nucleotides.  相似文献   

3.
In an adenine-requiring mutant strain of the yeast, Kluyveromyces lactis, the intracellular content of ATP is one-third to one-fifth that in a prototrophic wild strain under growing conditions. The quantitative differences becomes rather small in resting stationary-phase cells. Temporary changes in the two-dimensional protein patterns of mutant ribosomes occur when the ATP content is lowest during the transition phase of growth. The transfer of exponentially growing cells to a synthetic complete medium void of adenine induces the same changes in mutant ribosomes within several hours. Identification of ribosomal proteins by two-dimensional gel electrophoresis indicated all changeable proteins (at least five proteins) to belong to 40S ribosomal subunits. The mutant ribosomes prepared from the transition-phase cells have much lower activity (below 60%) for poly(U)-directed polyphenylalanine synthesis than those in exponentially growing or resting stationary-phase cells. Thus, changes in ribosomal components associated with the differences in ribosome activity in a cell-free system were noted in the adenylate-deprived cells of K. lactis.  相似文献   

4.
High pressure (HP) treatment inactivates bacteria in shellfish, but its effects on viruses in shellfish have not yet been determined, although viral illness is frequently associated with shellfish consumption. The aim of this study was to investigate the baroresistance of two bacteriophage viruses, Qbeta coliphage and c2 phage, in oysters and in culture media. High numbers (>or=10(7) ml(-1) or g(-1)) of both phages were obtained in culture media and in oysters. Samples were HP treated at 200-800 MPa at 20 degrees C for up to 30 min. Little or no inactivation of either phage was observed in oysters or in culture media after treatment at 相似文献   

5.
The Shwachman–Bodian–Diamond syndrome protein (SBDS) is a member of a highly conserved protein family of not well understood function, with putative orthologues found in different organisms ranging from Archaea, yeast and plants to vertebrate animals. The yeast orthologue of SBDS, Sdo1p, has been previously identified in association with the 60S ribosomal subunit and is proposed to participate in ribosomal recycling. Here we show that Sdo1p interacts with nucleolar rRNA processing factors and ribosomal proteins, indicating that it might bind the pre‐60S complex and remain associated with it during processing and transport to the cytoplasm. Corroborating the protein interaction data, Sdo1p localizes to the nucleus and cytoplasm and co‐immunoprecipitates precursors of 60S and 40S subunits, as well as the mature rRNAs. Sdo1p binds RNA directly, suggesting that it may associate with the ribosomal subunits also through RNA interaction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Biogenesis of an active ribosome complement and a dynamic cell surface complement are two major determinants of cellular growth. In yeast, the 60S ribosomal subunit protein RpL10p/Grc5p functions during successive stages in ribosome biogenesis, specifically rRNA processing, nucle(ol)ar preribosomal subunit assembly, nucleo-cytoplasmic transport and cytoplasmic maturation of ribosomes. Here, we report that a two-hybrid screen identified yeast genes SED1, ACS2 and PLB3 as encoding proteins physically interacting with both ribosomal RpL10p/Grc5p and its human homologue hRpL10p/QMp. SED1 encodes a differentially expressed cell wall protein which is proposed to be first transiently secreted to the plasma membrane as a GPI (glycosylated derivative of phosphoinositol)-anchored form and to be then transferred to the glucan layer of the cell wall. Ectopic expression of SED1 rescues both the aberrant growth phenotype and the translation defect of grc5-1(ts) temperature-sensitive cells. Furthermore, we report that Sed1p associates with translating ribosomes suggesting a novel, cytoplasmic role for Sed1p. ACS2 encodes one of the two yeast acetyl-CoA synthases and represents a key enzyme in one of several metabolic routes to produce acetyl-CoA, which in turn is indispensable for lipid biosynthesis. PLB3 encodes a phospholipase, which is active in the breakdown of membrane lipids. Our results support the view that Grc5p/RpL10p links ribosome function to membrane turnover and cell surface biogenesis.  相似文献   

7.
We have constructed an inexpensive, highly efficient eukaryotic cell-free translation system. Wheat germ rRNA (WG rRNA) was prepared by phenol/chloroform (P/C) extraction, a simple and quick method, from wheat germ, an inexpensive and commercially available by-product of flour production. Addition of a small amount of WG rRNA into a wheat germ cell-free translation system increased the protein productivity of the system 6- to 8-fold. Isolated 18S or 28S rRNA alone enhanced the protein production only 2-fold or 3.9-fold, respectively, at maximum. On the other hand, their equimolar mixture enhanced the production as much as the whole WG rRNA, indicating 18S and 28S rRNA synergistically functioned to enhance protein synthesis. Addition of WG rRNA slightly improved the stability of mRNA in the cell-free translation system, which explained only partly the enhancement of protein production. Addition of WGE or ribosome containing approximately the same amount of rRNA in the form of protein-rRNA complex as WG rRNA added to the system did not increase the protein production in the translation system. When ribosome in the cell-free translation system was replaced with WG rRNA, the system did not exhibit any detectable translation activity, indicating that the translation activity of WG rRNA is negligible in comparison with that of ribosome. These results indicated that WG rRNA affected some mechanisms regulating the translation rate in wheat germ cell-free system, resulting in increased protein production.  相似文献   

8.
通过双向电泳的方法对烤烟叶片营养、生殖生长转换时期叶片的蛋白质表达谱进行比较研究,结果分析出两时期叶片中差异表达的8个标志蛋白质。其中有6个蛋白在营养生长时期表达量较高,分别是与光合相关的叶绿体放氧复合蛋白(chloroplast oxygen-evolving complex/thylakoid luminal 25.6kDa protein);光呼吸过程中的关键酶丝氨酸羟甲基转移酶1(SHM1,Serine transhydroxymethyltransferase 1);与蛋白质合成及植物生长发育和细胞分裂有关的核糖体60S与30S蛋白、谷胱甘肽硫转移酶(GST,glutathione S-transferase)和葡聚糖内糖基转移酶(XET,xyloglucan endotransglycosylase )。另外2个碳同化过程中的关键蛋白1,5-二磷酸核酮糖羧化酶/加氧酶Rubisco大亚基(Ribulose-1,5-biphosphate carboxylase/ oxygenase large subunit)和小亚基(Small subunit ribulose 1,5-bisphosphate carboxylase)则在生殖生长时期表达量较高。结果表明烤烟在营养向生殖生长转换过程中叶片通过调节关键途径的蛋白表达以降低叶片的呼吸作用、蛋白质合成过程及抗氧化能力,同时增强叶片的碳同化过程。   相似文献   

9.
10.
A Candida albicans mitochondrial ribosomal protein S9 (MRPS9) cDNA was identified in a screen for sequences whose expression induce galactose lethality in Saccharomyces cerevisiae. MRPS9 appears to encode a protein of 346 amino acids with an N-terminal mitochondrial targeting sequence and an internal S9 signature that is conserved amongst eukaryotic mitochondrial and prokaryotic ribosomal protein S9 sequences. Expression of a GAL1-CaMRPS9 fusion in S. cerevisiae caused the slow development of a galactose-negative phenotype upon repeated subculturing, and this correlated with an increased frequency of petite mutant formation. Therefore, over-expression of CaMRPS9 interferes with S. cerevisiae mitochondrial function, which accounts for the inhibition of growth on galactose.  相似文献   

11.
12.
Genes encoding members of the highly conserved QM family have been identified in eukaryotic organisms from yeast to man. Results of previous studies have suggested roles for QM in control of cell growth and proliferation, perhaps as a tumor suppressor, and in energy metabolism. We identified recessive lethal alleles of the Saccharomyces cerevisiae QM homolog GRC5 that increased GCN4 expression when present in multiple copies. These alleles encode truncated forms of the yeast QM protein Grc5p. Using a functional epitope-tagged GRC5 allele, we localized Grc5p to a 60S fraction that contained the large ribosomal subunit. Two-dimensional gel analysis of highly purified yeast ribosomes indicated that Grc5p corresponds to 60S ribosomal protein L9. This identification is consistent with the predicted physical characteristics of eukaryotic QM proteins, the highly biased codon usage of GRC5, and the presence of putative Rap1p-binding sites in the 5′ sequences of the yeast GRC5 gene. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
The effects of zeolites and monocations on the protein synthesis in a cell-free system derived from wheat germ were investigated. M type of synthetic zeolite markedly enhanced the translation efficiency. Whereas this kind of stimulatory effect of zeolite in an Escherichia coli cell-free system resulted from a change in the salt compositions of the reaction solution with the addition of zeolite, the enhancement of protein synthesis in a wheat germ cell-free system was not due to the ion exchange reaction of zeolites. From the results of mRNA stability analysis, it was found that zeolite could stabilize the mRNA in a wheat germ cell-free protein synthesis system. The stabilization of mRNA by the simple addition of zeolites is useful for the enhancement of protein synthesis in a wheat germ cell-free system, since conventional methods to improve mRNA stability, such as the addition of nuclease inhibitor, have not been effective for a wheat germ cell-free system.  相似文献   

14.
A simple regression method for quantifying endogenous leucine in S30 extract was developed. This method enabled the quantity of translated protein in a cell-free protein synthesis system to be exactly determined.  相似文献   

15.
16.
The Rrs1 protein plays an essential role in the biogenesis of 60S ribosomal subunits in budding yeast (Saccharomyces cerevisiae). Here, we examined whether the fission yeast (Schizosaccharomyces pombe) homologue of Rrs1 also plays a role in ribosome biogenesis. To this end, we constructed two temperature‐sensitive fission yeast strains, rrs1‐D14/22G and rrs1‐L51P, which had amino acid substitutions corresponding to those of the previously characterized budding yeast rrs1‐84 (D22/30G) and rrs1‐124 (L61P) strains, respectively. The fission yeast mutants exhibited severe defects in growth and 60S ribosomal subunit biogenesis at high temperatures. In addition, expression of the Rrs1 protein of fission yeast suppressed the growth defects of the budding yeast rrs1 mutants at high temperatures. Yeast two‐hybrid analyses revealed that the interactions of Rrs1 with the Rfp2 and Ebp2 proteins were conserved in budding and fission yeasts. These results suggest that the essential function of Rrs1 in ribosome biogenesis may be conserved in budding and fission yeasts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Members of the YERO57c/YJGFc/UK114 protein family have been identified in bacteria and eukaryotes. The budding yeast Saccharomyces cerevisiae contains two different proteins of this family, Hmf1p and Mmf1p. We have previously shown that Mmf1p is a mitochondrial protein functionally related to its human homologue and able to influence the maintenance of mitochondrial DNA. Deletion of Mmf1 results in loss of the mitochondrial genome. Using a multicopy suppression approach, we have identified a protein of the mitochondrial large ribosomal subunit, MRPL40, which stabilizes mtDNA in Deltammf1 cells. Overexpression of MRPL40 did not prevent loss of mtDNA in a mutant strain lacking the mitochondrial protein Abf2p. Thus, MRPL40 does not have a general effect on mtDNA stability, but it may be specific for the mmf1-null strain. We also show that the Deltamrpl40 cells present a similar phenotype to the mmf1-null strain, having reduced mtDNA stability and growth rate. Furthermore, we observed that rho(+)Deltamrpl40 haploid cells can be obtained when tetrads are directly dissected on medium containing a non-fermentable carbon source. Thus, replication and segregation of the mtDNA can occur in the absence of MRPL40. We also show that another mitochondrial ribosomal protein, MRPL38, is able to overcome the Deltammf1-associated defect. Together, our results suggest a link between Mmf1p and the two mitochondrial ribosomal proteins.  相似文献   

18.
The Saccharomyces cerevisiae RPS0 A and B genes encode proteins essential for maturation of the 40S ribosomal subunit precursors. We have isolated a homologue of the RPS0 gene from Candida tropicalis, which we named CtRPS0. The C. tropicalis RPS0 encodes a protein of 261 amino acid residues with a predicted molecular weight of 28.65 kDa and an isoelectric point of 4.79. CtRps0p displays significant amino acid sequence homology with Rps0p from C. albicans, S. cerevisiae, Neurospora crassa, Schizosaccharomyces pombe, Pneumocystis carinii and higher organisms, such as human, mouse and rat. CtRPS0 on a high copy number vector can complement the lethal phenotype linked to the disruption of both RPS0 genes in S. cerevisiae. Southern blot analysis suggests that CtRPS0 is present at a single locus within the C. tropicalis genome.  相似文献   

19.
The mitochondrial DNA (mtDNA) in some yeasts has a linear structure with inverted terminal repeats closed by a single-stranded loop. These mtDNAs have generally a constant gene order, beginning with a small ribosomal RNA gene at the right end and terminating with a cytochrome oxidase subunit 2 gene (COX2) at the left end, independently of the wide variation in genome size. In the mtDNAs from several species of the genus Williopsis, we found an additional open reading frame, ORF1, which was homologous to the Saccharomyces cerevisiae RF1 gene encoding a group I intron maturase-like protein. ORF1 genes from W. mrakii and W. suaveolens were mapped and sequenced. Next to ORF1, COX2 and methionyl tRNA genes were present on the opposite strand. The same relative positions of genes in the mtDNAs so far examined suggests that the constancy of gene order is generally conserved also at the level of individual tRNA genes. We identified another open reading frame, ORF2, in W. mrakii mtDNA. It was mapped next to the cytochrome oxidase subunit 3 gene. Rich in adenine-thymine bases, ORF2 appears to be a homologue of the VAR1 gene which codes for a small ribosomal subunit protein in S. cerevisiae mitochondria. Nucleotide sequences data have been deposited in the EmBL data library under the following Accession Numbers: X66594 (Apocytochrome b and ORF2 genes of W. mrakii), X66595 (ORF1, tRNA-Met and COX2 genes of W. mrakii), X73415 (tRNA-Met and COX2 genes of W. suaveolens), X73416 (ORF1 gene of W. suaveolens) and X73414 (tRNA-Met and COX2 genes of P. jadinii).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号