首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study reported in this paper was undertaken to investigate the physico-mechanical properties of aerated cement composite with rubber waste particles, in order to produce usable materials in cellular concrete applications. The material, containing different amounts of rubber particles as replacement to cement by volume, was aerated by artificially entrapping air voids by means of a new proteinic air-entraining agent. Results from tests performed on fresh composite have shown many attractive properties, such as improvement in workability and air-entrained with high stability of air-bubbles in the matrix. A study conducted on hardened composite properties has indicated a significant reduction in sample unit weight, thereby resulting in a level of compressive strength compatible with a load-bearing wall. The reduction in flexural strength was lower than that in compressive strength. The results have shown that the presence of air voids and rubber particles in the matrix reduces the elasticity dynamic modulus, which indicates a high level of sound insulation of the composite. This study has also highlighted the effect of the proteinic air-entraining agent on the cement matrix/rubber interaction system, as regards the composite’s mechanical strength.  相似文献   

2.
This paper presents an experimental study on the restrained shrinkage cracking of the lightweight concretes made with cold-bonded fly ash lightweight aggregates. Two types of fly ash having different physical and chemical properties were utilized in the production of lightweight aggregates with different strengths. Afterwards, lower strength aggregates were also surface treated by water glass and cement–silica fume slurry to improve physical and mechanical properties of the particles. Therefore, a total of eight concrete mixtures were designed and cast at 0.35 and 0.55 water–cement ratios using four types of lightweight coarse aggregates differing in their surface texture, density, water absorption, and strength. Ring type specimens were used for restrained shrinkage cracking test. Free shrinkage, creep, weight loss, compressive and splitting tensile strengths, and modulus of elasticity of the concretes were also investigated. Results indicated that improvement in the lightweight aggregate properties extended the cracking time of the concretes resulting in finer cracks associated with the lower free shrinkage. Moreover, there was a marked increase in the compressive and splitting tensile strengths, and the modulus of elasticity.  相似文献   

3.
In this work, the effect of moisture absorption on the mechanical properties of particulate composite materials is studied. Moisture absorption constitutes a main parameter affecting the thermomechanical behaviour of composites, since it causes plasticization of the polymer matrix with a concurrent swelling. In the present work, the influence of water absorption on the flexural properties of particle-reinforced composites was thoroughly investigated. It was found that during the process of moisture absorption there exists a variation of the flexural properties closely related to the degradation of the mechanical behaviour of the composite, as well as the percentage amount of moisture absorbed. Experiments were carried out with composite made of epoxy resin reinforced with low-content iron particles. The variation of ultimate stress, breaking strain, deflection, elastic modulus and Poisson ratio due to water absorption was examined.  相似文献   

4.
在分析炭黑填充橡胶复合材料的宏观与细观特征之间联系的基础上,提出了具有随机分布形态的代表性体积单元,推导并应用了周期性细观结构的边界约束条件,建立了三维多颗粒夹杂代表性体积单元的数值模型,对炭黑填充橡胶复合材料的宏观力学行为进行了模拟仿真。研究表明,该模型通过周期性边界条件的约束保证了宏观结构变形场和应力场的协调性;计算得到的炭黑填充橡胶复合材料的弹性模量明显高于未填充橡胶材料,并随着炭黑颗粒所占体积分数的增加而增大;该模型对复合材料有效弹性模量的预测结果与实验结果吻合较好,而且比Bergstrom三维模型的预测结果更好,证实了该模型能够用于炭黑颗粒增强橡胶基复合材料有效性能的模拟分析。  相似文献   

5.
Elastomers, particularly rubbers, are viscoelastic polymers with low Young’s modulus. In this research, carbon nanotubes were used in the rubber and a rubber–carbon nanotube composite was modeled by ABAQUS™ software. Due to hyperelastic behavior of the rubber, strain function energy was used for the modeling. A sample of rubber was tested and uniaxial, biaxial, as well as planar test data obtained in these tests were used to get an energy function. Polynomial and reduced polynomial form are two common methods to achieve strain energy function. In this paper, elasticity modulus and Poisson ratio were measured for a representative volume element (RVE) of composite. Rubber was also considered as an elastic material and its composite properties in this state compared by hyperelastic rubber matrix assumption. ABAQUS was used to create a three dimensional finite element model of a single long wavy nanotube with diameter of D which perfectly bonded to matrix material. Nanotube waviness was modeled by sinusoidal carbon nanotube shape. Results showed that mechanical properties of the rubber will extremely change by adding carbon nanotube. Furthermore, several volume fractions of carbon nanotube in rubber were modeled and it was shown that stiffness of nanocomposite increases by more volume fraction of carbon nanotubes.  相似文献   

6.
In search for improved construction materials and techniques, two main factors must be taken into account: ecological impact and production costs. The incorporation of recycled materials originating from renewable sources into cementitious cores is a feasible alternative that has gained ground in civil construction. This study investigated the matrix of a vegetable waste composite with polymer-modified cement. Several mixtures composed of Slag-Modified Portland cement, treated vegetable residue, wood from the Pinus caribaea species, latex type polymer, styrene–butadiene rubber (SBR) and an adequate water ratio for the mixtures were studied. The composite was characterized based on mortar tests carried out according to ABNT norms to determine its mechanical behavior, workability and water absorption by capillarity. Some of the essential properties of mortars, such as workability, mechanical strength and durability were substantially altered by the addition of polymers when compared to mortars without this addition. The effect of reduced capillary pores resulting from the action of the polymer contributed to decrease in the permeability of the material, preventing the penetration of aggressive agents due to the phenomenon of water transport. The composite containing vegetable residues and SBR-modified core presented the best mechanical behavior, and an increase of the polymer content resulted in greater water retention in the fresh mixture and a significant reduction in porosity.  相似文献   

7.
The management of worn tires is a concern in industrialized countries. The application of crumb rubber as lightweight aggregate in cement based materials is a green alternative for reusing this material. High replacements of natural sand by crumb rubber were studied and an air-entraining agent was employed to ensure a cellular structure in the cement-based composite. The obtained results from tests in fresh state reveal an improvement in workability. The tests conducted on hardened composite show promise for constructive applications where thermal and acoustic properties are required. The minimum requirement of mechanical strength for masonry units was achieved, since compressive strengths varied between 1 and 10 MPa. Finally, potential applications as a construction material have been highlighted.  相似文献   

8.
考虑不均匀界面时混凝土弹性模量预测   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了考虑不均匀界面时混凝土弹性模量预测的解析法。根据界面层上水泥颗粒的分布特性, 给出了界面层上任一点处的局部水灰比和孔隙率。将不均匀界面层划分成一系列同心球壳单元, 通过反演方法确定了每个球壳单元和水泥石基体的弹性模量。将三相混凝土分解成一系列两相复合子结构, 应用两相复合球模型的正确解导出混凝土弹性模量。通过与文献中的两组实验结果比较验证了本文方法的有效性。数值结果表明, 对于给定的骨料体积分数, 混凝土弹性模量随着最大水泥颗粒直径和水灰比的增大而减小, 但随着最大骨料直径的增大而增大, 骨料级配对混凝土弹性模量也有一定的影响。   相似文献   

9.
Lignocellulosic lightweight concretes are a potential contributor to sustainable development. However, lignocellulosic aggregates are not always fully compatible with cement matrices leading to setting delays, significant dimensional variations and low mechanical strengths. An aggregate treatment, reducing water absorption and water-soluble molecule release, can avoid or reduce these drawbacks. In this study a coating treatment, using a pectin/polyethylenimin (PP) mixture, was applied to flax shives, which is a lignocellulosic by-product. Before shive coating, a dilution with distilled water or a micro-wave heating were conducted to decrease PP mixture viscosity.The PP treatment involved a decrease in shive water absorption. Compared to standard shive concrete, treated shive concrete exhibited a decrease in setting delay with an increase in cement hydration enthalpy, an increase in mechanical strengths and a significant reduction in dimensional variations. Although a slight increase in thermal conductivity and bulk density was measured, the cement-shive composite obtained still belongs to the insulating concrete category.  相似文献   

10.
Mechanical damage was investigated in polymethylmethacrylate toughened with core-shell (hard core) rubber particles. During a tensile experiment, volume changes, light absorption, light scattering and a small strain elastic modulus were recorded. Light scattering was quantitatively related to the number of damaged particles and a fast partial unloading technique allowed determination of the non-elastic part of these changes in material properties. Experiments performed between 10–5 and 10–1s–1 and between 20 and 70 °C showed time-temperature transitions. These appeared to be different for each property, and measurement of the activation energy for each parameter enabled microscopic damage mechanisms to be inferred. Three types of microstructural damage were observed: pure matrix plasticity at very low strain rates or high temperatures, rubber cavitation at correlated locations at medium strain rates and temperatures, and disordered cavitation, rubber tearing and matrix plasticity at high strain rates or low temperatures. The experimental mean stress triggering rubber cavitation was compared with the predicted value.  相似文献   

11.
Abstract

The incorporation of low density, high modulus ceramic particles into a steel matrix is a potential route to improve the mechanical performance of steels. A powder metallurgy, mechanical blending route has been adopted to produce a homogeneous distribution of TiB2 particles in both pure Fe and 316L stainless steel matrices. This approach gave large increases in both the static and fatigue strength with increasing TiB2 volume fractions, in comparison with the matrix material. Additions of TiB2 also resulted in reduced density and increased stiffness in the composite or lightweight steel materials, giving a specific stiffness increase of 52%with a fraction of 30 vol.-%TiB2 in Fe, compared with the matrix.  相似文献   

12.
Effective properties of three-phase electro-magneto-elastic composites   总被引:1,自引:0,他引:1  
Coupling between the electric field, magnetic field, and strain of composite materials is achieved when electro-elastic (piezoelectric) and magneto-elastic (piezomagnetic) particles are joined by an elastic matrix. Although the matrix is neither piezoelectric nor piezomagnetic, the strain field in the matrix couples the electric field of the piezoelectric phase to the magnetic field of the piezomagnetic phase. This three-phase electro-magneto-elastic composite should have greater ductility and formability than a two-phase composite in which the electric field and the magnetic field are coupled by directly bonding two brittle materials. A finite element analysis (FEA) and micromechanics based averaging of a representative volume element (RVE) are performed in this work to determine the effective dielectric, magnetic, mechanical, and coupled-field properties of an elastic matrix reinforced with piezoelectric and piezomagnetic fibers as functions of the phase volume fractions, the fiber arrangements in the RVE, and the fiber material properties with special emphasis on the poling directions of the piezoelectric and piezomagnetic fibers. The effective magneto-electric moduli of this three-phase composite are found to be less than the effective magneto-electric moduli of a two-phase piezoelectric/piezomagnetic composite, because the elastic matrix is not stiff enough to transfer significant strains between the piezomagnetic and piezoelectric fibers.  相似文献   

13.
SiC and Al2O3 (10–20v%) particle-reinforced Al-2618 matrix composites subjected to tensile loading were selected to simulate stress–strain curves and average stress in particles, and to examine mechanical properties experimentally in comparison. A particle-compounded mechanical model was established based on Eshelby equivalent inclusion approach to simulate stress–strain curves by introducing secant modulus and tangent modulus techniques, and to calculate stress in particles and in matrices. The same modeling work was carried out by FEM analysis based on the unit cell model using a commercial ANSYS code. The modeling and experiment were also applied to compare the mechanical behaviors between hard matrix and soft matrix, which were produced under different heat treatments. Through the comparison of the results between simulations and experiment, it is shown that Eshelby particle-compounded mechanical model can predict the stress–strain curve of the composites with both hard matrix and soft matrix, while the FEM model can match the experimental data with only hard matrix. The modeling was also carried out to study the influence of different volume fractions and aspect ratios on elastic modulus and yield strength of the composites with different reinforcing particles to get a better understanding of strengthening mechanisms of the composites.  相似文献   

14.
基于流变学理论研究橡胶粉与不同来源基质沥青的配伍性,采用动态剪切流变仪(DSR)分别对不同基质沥青加工而成的橡胶沥青进行应变扫描、温度扫描、频率扫描等常规动态剪切流变试验,从相位角、复合模量和车辙因子等指标评价橡胶沥青黏弹特性,定性区分沥青四组分对橡胶沥青黏弹特性的影响,并对橡胶沥青进行滞回环试验,运用灰色关联数学分析方法定量给出沥青四组分对橡胶沥青的残余变形、弹性贮能、耗散能、弹性比例和复合弹性模量等指标的影响。结果表明:流变学理论是研究橡胶粉改性剂与基质沥青配伍性的有效方法;从能量角度评价沥青四组分对橡胶沥青黏弹特性指标的影响,沥青质对橡胶沥青残余应变影响较大;胶质组分对橡胶沥青弹性贮能和耗散能影响最大,而芳香分影响最小;沥青质组分对橡胶沥青弹性比例参数影响最大;芳香分含量可以提高橡胶沥青复合模量。  相似文献   

15.
R. Wang  R. Lackner  P.‐M. Wang 《Strain》2011,47(2):117-126
Abstract: In this paper, micro‐mechanical properties of styrene–butadiene rubber (SBR) latex‐modified cement pastes identified by means of the nanoindentation (NI) technique are related to macro‐mechanical properties of SBR latex‐modified mortars obtained from standard test methods, considering an SBR latex/cement ratio varying from 0% to 20%. For this purpose, the average value of the hardness and the so‐called indentation modulus of the different material phases of the cement paste, i.e. calcium–silicate–hydrate (CSH), portlandite, anhydrous cement, etc., obtained from NI are compared with the compressive and flexural strengths, on the one hand, and the dynamic elastic modulus of SBR latex‐modified mortars, on the other hand. This comparison revealed a linear correlation between the dynamic elastic modulus and the indentation modulus and between the compressive strength, flexural strength and hardness. Thus, the obtained results clearly indicate the finer‐scale origin of the macroscopic elastic and strength properties, linking the mechanical properties at the so‐called mortar scale to the cement‐paste scale.  相似文献   

16.
A non-conventional way of preparation of lightweight porous materials by templating hydrogels with a range of hydrophilic and hydrophobic scaffolding materials was explored. Sub-millimetre hydrogel slurries of polyacrylamide and gellan gum were templated with aqueous slurries of cement, gypsum and clay–cement mixtures or alternatively, dispersed in curable polydimethylsiloxane (PDMS). After the solidification of the scaffolding material, the evaporation of structured hydrogel produced porous composite material whose pores mimic the hydrogel meso-structure. We studied the density, volume contraction and the compression strength of the formed porous materials as function of the hydrogel initial volume fraction. This versatile hydrogel templating method can be applied very inexpensively to a range of scaffolding materials to yield lightweight porous materials with a great potential for use in the building industry in heat and sound insulation panels, an alternative to aerated concretes, lightweight building blocks, porous rubber substitutes and foam shock absorbers.  相似文献   

17.
The properties of glass fibre reinforced cement composites (grc) containing alkali-resistant fibres of lengths 10 to 40 mm and volume fractions 2 to 8% have been studied. At 28 days the optimum properties of the composite were achieved with 6 vol % fibre addition. These were 4 to 5 times the bending strength, 3 to 4 times the tensile strength and 15 to 20 times the impact strength of the unreinforced cement paste. Further increase in the fibre content increases the porosity of the composite resulting in the lowering of bending and tensile strengths. The stress and strain of the composite at matrix cracking increased with increasing fibre contents. No significant improvements in the modulus of the composite were observed over the range of fibre additions investigated. The trends in the properties of grc as affected by the variations in volume fraction and length of the fibre, and environmental conditions of curing of the composites, are qualitatively related to the degree of cement hydration, changes in porosity of the composites and fibre/matrix interfacial effects. The properties of grc change with time, (strengths tend to decrease) and long term studies are in progress.  相似文献   

18.
Unit cell models have been widely used for investigating fracture mechanisms and mechanical properties of composite materials assuming periodically arrangement of inclusions in matrix. It is desirable to clarify the geometrical parameters controlling the mechanical properties of composites because they usually contain randomly distributed particulate. To begin with a tractable problem this paper focuses on the effective Young’s modulus E of heterogeneous materials. Then, the effect of shape and arrangement of inclusions on E is considered by the application of FEM through examining three types of unit cell models assuming 2D and 3D arrays of inclusions. It is found that the projected area fraction and volume fraction of inclusions are two major parameters controlling effective elastic modulus of inclusions.  相似文献   

19.
Concrete produced using a magnesium phosphate binder can exhibit faster strength gain and result in lower overall environmental impacts than concretes produced with Portland cement binders. This paper reports a study to develop and characterize the rheological and mechanical properties of lightweight ceramic concretes (LWCC) that use a magnesium potassium phosphate binder. The aggregate type and the overall mix composition were primary variables in the study. Aggregate types included expanded clay, expanded slate, and expanded shale. Crushed bottom ash aggregate from a local coal-fired thermal generating station was also used. The aggregates of a given material varied by size fraction and by surface characteristics in some cases. The test results showed that increases in the water/binder ratio increased the slump flow but had negligible influence on the setting time. The compressive strength and density of the LWCCs both decreased with increases in the aggregate/binder mass ratio and the water/binder ratio, regardless of the type of lightweight aggregate. The 28 day compressive strength and density ranged from 17 to 36 MPa and 1600 to 1870 kg/m3 respectively. Regardless of the aggregate type, increasing the water/binder ratio also reduced the elastic modulus, modulus of rupture and direct shear strengths. Relationships were developed to directly relate these mechanical properties to the corresponding compressive strengths. The results indicate that LWCCs using a magnesium phosphate binder and lightweight aggregates can be formulated with rheological and mechanical properties suitable for structural applications.  相似文献   

20.
三维编织复合材料面内刚度和强度性能研究   总被引:16,自引:3,他引:13       下载免费PDF全文
以修正的经典层合板理论为基础, 分析三维编织复合材料的力学性能。在单胞的长度方向积分和平均, 预测编织结构复合材料的有效弹性模量; 采用蔡-胡多项式失效准则, 得到三维编织复合材料的强度性能。另外, 进行编织结构复合材料的力学性能实验, 探讨纺织工艺参数, 如纤维编织角、横向编织角、轴向纱数与编织纱数之比、纤维体积含量等对力学性能的影响, 理论预报和试验结果进行对比, 发现该力学模型能较好地预报三维编织复合材料的刚度和强度性能。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号