首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The lattice constants of AlxGa1?x As epitaxial alloys with various AlAs (x) contents are determined for AlxGa1?xAs/GaAs(100) heterostructures grown by MOC-hydride epitaxy using X-ray diffractometry and an X-ray back-reflection method. An ordered AlGaAs2 (superstructural) phase is found in epitaxial heterostructures with x ≈ 0.50. The lattice constant of this phase is smaller than the lattice constants of an Al0.50Ga0.50As alloy and GaAs single-crystal substrate.  相似文献   

2.
The properties of epitaxial Ga x In1 – x P alloys with an ordered arrangement of atoms in the crystal lattice are studied by a number of spectroscopic methods. The alloys are grown by metal-organic chemical vapor deposition onto single-crystal GaAs(100) substrates. It is shown that, under conditions of the coherent growth of an ordered Ga x In1 – x P alloy on a GaAs(100) substrate, atomic ordering results in radical modifications of the optical properties of the semiconductor compared to the properties of disordered alloys. Among these modifications are a decrease in the band gap and an increase in the luminescence intensity. From the data of dispersion analysis of the infrared dispersion spectra and from ultraviolet spectroscopy data obtained in the transmittance–reflection mode of measurements, the basic optical characteristics, specifically, the dispersion of the refractive index and the high-frequency permittivity of Ga x In1 – x P alloys with ordering are determined. All of the experimental data are in good agreement with the developed theoretical concepts.  相似文献   

3.
The thermodynamic stability of Cd1?xHgxTe, MnxHg1?xTe, and ZnxHg1?xTe alloys is studied. Calculations performed in the context of the δ lattice-parameter model indicate that CdHgTe and ZnHgTe alloys are stable over the entire range of compositions at typical growth temperatures. At the same time, a miscibility gap is found in MnxHg1?xTe at 0.33 < x < 1 at T = 950 K, which is consistent with the known experimental data. It is shown that the biaxial strains observed in MnxHg1?xTe/CdTe and MnxHg1?xTe/Cd0.96Zn0.04Te thin epitaxial films lead to a narrowing of the miscibility gap and to insignificant lowering of critical temperatures.  相似文献   

4.
The transition from two-dimensional (2D) pseudomorphic growth to the three-dimensional (3D) (nanoisland) growth in InxGa1?xAs/GaAs multilayer structures grown by molecular-beam epitaxy was investigated by atomic force microscopy, photoluminescence, and Raman scattering. The nominal In content x in InxGa1?xAs was varied from 0.20 to 0.50. The thicknesses of the deposited InxGa1?xAs and GaAs layers were 14 and 70 monolayers, respectively. It is shown that, at these thicknesses, the 2D-3D transition occurs at x ≥ 0.27. It is ascertained that the formation of quantum dots (nanoislands) does not follow the classical Stranski-Krastanov mechanism but is significantly modified by the processes of vertical segregation of In atoms and interdiffusion of Ga atoms. As a result, the InxGa1?xAs layer can be modeled by a 2D layer with a low In content (x < 0.20), which undergoes a transition into a thin layer containing nanoislands enriched with In (x > 0.60). For multilayer InxGa1?xAs structures, lateral alignment of quantum dots into chains oriented along the \([\overline 1 10]\) direction can be implemented and the homogeneity of the sizes of quantum dots can be improved.  相似文献   

5.
Monolithic dual-junction GaInP/GaAs solar cells grown by the MOCVD method were studied. The conditions of the growth of ternary Ga x In1?x P and Al x In1?x P alloys lattice-matched to GaAs are optimized. Technology for fabrication of a tunneling diode with a high peak current density of 207 A/cm2 on the basis of heavily doped n ++-GaAs:Si and p ++-AlGaAs:C layers is developed. Cascade GaInP/GaAs solar cells obtained as a result of relevant studies featuring a good efficiency of the solar-energy conversion both for space and terrestrial applications. The maximum value of the GaInP/GaAs solar-cell efficiency was 30.03% (at AM1.5D, 40 suns).  相似文献   

6.
The chemical bonding of GaP, InP, InAs, InSb, and InBi binary compounds was investigated as well as the modification of the bonding in GaxIn1?xP, InAsxSb1?x, and InSb1?xBix semiconductor alloys; this modification occurs as a result of variation in the composition characterized by the parameter x. An approach based on the consideration of the total valence charge density, the chemical-bonding polarity, and the transverse effective charge was used. The elastic constants of the aforementioned ternary solid solutions were calculated, and the influence of chemical-bonding modification on these constants was analyzed. Local strains and composition disordering in the alloys under consideration drastically affect the dependences of the quantities under investigation on solid-solution composition. Thus, the above effects cannot be neglected in investigating substitutional solid solutions.  相似文献   

7.
Temperature dependences of the Hall coefficient and resistivity of the InxGa1 ? x N alloys (0 ≤ x ≤ 1) are investigated. It is found that, at x ≤ 0.4, the temperature dependences of the Hall coefficient and resistivity have the activation-related portion. The activation energy depends linearly on the In content in the alloy. At x ≈0.5, the activation portion vanishes. The main scattering mechanism depends on the temperature, on the defect density in the film (this density is largely determined by the used intermediate GaN layers), and on the alloy composition x.  相似文献   

8.
Results of photoluminescence (PL) studies of heterostructures with strongly strained InxGa1 ? x As quantum wells (QWs) are presented. It is shown that the dependence of the PL intensity on the QW thickness has a maximum whose position depends on the composition of the In x Ga1 ? x As solid solution. The PL wavelength at the maximum intensity is 1.13 µm at a QW thickness of 60 µm at a QW thickness of 50 Å for x = 0.39 and 0.42, respectively.  相似文献   

9.
Conditions for the transition from the staggered heterojunction to the type-II broken-gap one were considered for isolated Ga1?x InxAsySb1?y /InAs(GaSb) heterostructures in relation to the quaternary alloy composition. Energy-band diagrams of such heterojunctions were estimated and energy band offsets Δ at the heterointerface were determined. It was experimentally found that the type-II broken-gap heterojunction in the Ga1?x InxAsySb1?y /p-InAs structure is observed in the entire range of composition parameters under study, 0.03 < x < 0.23, and becomes staggered in the range 0.3 < x < 1. In p-Ga1?x InxAsySb1?y /p-GaSb heterostructures with the indium content 0.85 < x < 0.92 in the solid phase, the p-type conductivity is observed, which is indicative of the staggered heterojunction. At x > 0.92, the contribution of electrons of the semimetal channel at the heterointerface to the total conductivity was observed, as well as the transition from the staggered heterojunction to the type-II broken-gap one.  相似文献   

10.
Magnetoresistance in n-InxGa1?xAs/GaAs (x ≈ 0.18) heterostructures with double quantum wells (DQWs) was studied in the magnetic field parallel to the DQW layer. Specific features of the magnetoresistance, related to the passing of the tunnel gap edges across the Fermi level, are revealed and studied. Agreement between the calculated and experimental positions of the observed features is obtained when the spin splitting of the energy spectrum is taken into account. Earlier, similar features were observed in the magnetoresistance of n-GaAs/AlxGa1?xAs DQW heterostructures, but the spin effects did not manifest themselves.  相似文献   

11.
This study aims to determine the optimal configuration of the dual-junction InGaN solar cell. Several parameters of the dual-InGaN-junction solar cell have been investigated as the band gap combination and the thicknesses of the layers. Physical models and the optical properties of the In x Ga1?x N according to the indium content have been used. The dual-junction solar cell has been designed and simulated for each chosen band gap combination. The current densities drawn from the sub-cells were matched by adjusting their emitter layers thicknesses. The best conversion efficiency obtained for the optimized dual-junction In0.49Ga0.51N/In0.74Ga0.26N solar cell, under standard conditions, was 34.93% which corresponds to the band gap combination of 1.73 eV/1.13 eV. The short-circuit current density and the open circuit voltage obtained from the tandem cell In0.49Ga0.51N/In0.74Ga0.26N are respectively, 21.3941 mA/cm2 and 1.9144 V. The current mismatch was 0.057%. The effects of the front and back layers thicknesses of the top and bottom cells on the efficiency were also studied. Furthermore, the electrical characteristics of the dual-junction solar cell and its sub-cells were also discussed.  相似文献   

12.
The lattice parameters and band gap are experimentally determined for Si-Si1?xGex structures in relation to the component ratiox (0 ≤ x ≤ 1). The distribution of components over the hickness of the Si1?xGex alloys and certain photoelectric properties are studied. The experimental data indicate that the structures obtained are of high quality. Graded-gap Si1?xGex alloys (0 ≤ x ≤ 1) can be used for the fabrication of photoelectric devices sensitive in the visible and near-IR regions. They can also be used as substrates for GaAs and GaAs-based layers.  相似文献   

13.
It is shown that the ground state transition energy in quantum dots in heterostructures grown by atmospheric-pressure MOCVD can be tuned in the range covering both transparence windows of the optical fiber at wavelengths of 1.3 and 1.55 μm by varying the thickness and composition of the thin GaAs/InxGa1−x As double cladding layer. These structures also exhibit a red shift of the ground state transition energy of the InxGa1−x As quantum well (QW) as a result of the formation of a hybrid QW InxGa1−x As/InAs (wetting layer) between the quantum dots (QDs). The Schottky diodes based on these structures are characterized by an increased reverse current, which is attributed to thermally activated tunneling of electrons from the metal contact to QD levels. __________ Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 38, No. 4, 2004, pp. 448–454. Original Russian Text Copyright ? 2004 by Karpovich, Zvonkov, Levichev, Baidus, Tikhov, Filatov, Gorshkov, Ermakov.  相似文献   

14.
Monte Carlo simulations of electron transport in AlxGa1−x As/GaAs/InyGa1−y As double-quantum-well heterostructures in high lateral electric fields are carried out. It is shown that, under the conditions of intervalley Γ-L electron transfer, there exists a population inversion between the first and the second quantum-confinement subbands in the Γ valley. The population inversion appears in the fields exceeding 4 and 5.5 kV/cm at 77 and 300 K, respectively. The gain in a superlattice composed of such quantum wells is estimated to be on the order of 100 cm−1 for radiation with a wavelength of 12.6 μm. __________ Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 37, No. 2, 2003, pp. 224–229. Original Russian Text Copyright ? 2003 by Aleshkin, Andronov, Dubinov.  相似文献   

15.
The technological conditions for growing single crystals of Tl1–x In1–x Sn x Se2 (x = 0.1–0.25) alloys are developed. The spectral distribution of the photoconductivity of the grown crystals at T = 300 K and thermally stimulated conductivity are studied. The effect of In3+cation substitution with Sn4+ in Tl1–x In1–x Sn x Se2 (x = 0.1–0.25) alloys on their photoelectric properties is shown.  相似文献   

16.
17.
The possibility of using the normal skin effect in dielectric waveguides for long-wavelength radiation is analyzed. A design of a waveguide integrated with a heterolaser is suggested, in which an undoped layer of GaAs is clad between heavily-doped n- and p-Al x Ga1 ? x As alloy layers, reflecting radiation because of the normal skin effect. It is shown that an efficient waveguide can be formed using n-Al x Ga1 ? x As layers with x < 0.45 and the electron concentration N > 5 × 1018 cm?3 and p-Al x Ga1 ? x As layers of any composition with the hole concentration P ≥ 3 × 1019 cm?3.  相似文献   

18.
A 1 550 nm long-wavelength vertical cavity surface emitting laser (VCSEL) on InP substrate is designed and fabricated. The transfer matrix is used to compute reflectivity spectrum of the designed epitaxial layers. The epitaxial layers mainly consist of 40 pairs of n-AlxGayIn(1-x-y)As/InP, and 6 strain compensated AlxGayIn(1-x-y)As/InP quantum wells on n-InP substrate, respectively. The top distributed Bragg reflection (DBR) mirror system has been formed by fabricating 4.5 pairs of SiO2/Si. The designed cavity mode is around 1 536 nm. The dip of the fabricated cavity mode is around 1 530 nm. The threshold current is 30 mA and the maximum output power is around 270 μW under CW operation at room temperature.  相似文献   

19.
The thermodynamics as well as the energetics and the structural properties of cubic group-III nitrides alloys have been investigated by combining first-principles total energy calculations and cluster expansion methods. In particular results are shown for the ternary InxGa1−xN and the quaternary AlxGayIn1−xyN alloys. Phase separation is predicted to occur at growth temperatures, for both fully relaxed alloys. A remarkable influence of an external biaxial strain on the phase separation, with the formation of ordered phase structures has been found for the InGaN alloy. These findings are used to clarify the origin of the light emission process in InGaN-based optoelectronic devices. Results are shown for the composition dependence of the lattice constant and of the energy gap in quaternary AlxGayIn1−xyN alloys.  相似文献   

20.
The deposition of In x Ga1–x As with an indium content of 0.3–0.5 and an average thickness of 3–27 single layers on a GaAs wafer by metalorganic chemical vapor deposition (MOCVD) at low temperatures results in the appearance of thickness and composition modulations in the layers being formed. Such structures can be considered to be intermediate nanostructures between ideal quantum wells and quantum dots. Depending on the average thickness and composition of the layers, the wavelength of the photoluminescence peak for the hybrid InGaAs quantum well–dots nanostructures varies from 950 to 1100 nm. The optimal average In x Ga1–x As thicknesses and compositions at which the emission wavelength is the longest with a high quantum efficiency retained are determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号