首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
M.C. Li  Y.F. Cheng   《Electrochimica acta》2007,52(28):8111-8117
The effects of hydrogen-charging on anodic dissolution of pipe steel under near-neutral pH condition were studied by electrochemical techniques. Hydrogen-charging enhances the anodic dissolution rate of the steel. The hydrogen-enhanced dissolution increases with increasing charging current density. The hydrogen effect is attributed to the alteration of chemical potential and exchange current density of steel. Hydrogen-charging affects the corrosion process of the steel. In particular, at a high charging current density, a layer of corrosion product forms on the electrode surface to change corrosion potential and interfacial double-charge layer capacitance as well as charge-transfer resistance. The hydrogen effect factor for enhanced anodic dissolution of steel at an anodic potential of −0.4 V (SCE) is 1.53 only. Hydrogen-enhanced anodic dissolution of steel by itself may not be the major factor contributing to the high rate of crack growth in pipe steel in near-neutral pH electrolyte. A further investigation of the synergistic effect of hydrogen and stress on dissolution at the crack-tip is essential to determine the mechanism of near-neutral pH stress corrosion cracking of pipelines.  相似文献   

2.
Local anodic dissolution behavior of smooth and pre-cracked X70 pipeline steel specimens under applied stress were investigated by micro-electrochemical measurements and numerical simulation. The results demonstrated that the anodic dissolution rate of steel is enhanced by applied tensile stress. Corrosion of the stressed steel is accompanied with the formation of a layer of corrosion product deposit on electrode surface. However, the deposit layer does not provide effective protection to the underlying steel for corrosion attack due to its loose, porous structure. Under small tensile stress, the stress-enhanced dissolution of steel is not significant. With the increase of stress level up to 80% of yielding strength of steel, the activity of the steel increases remarkably, resulting in a significant enhancement of the anodic dissolution of steel. A stress concentration is developed at the crack-tip and enhances significantly the local anodic dissolution of steel. The stress effect factor at the crack tip is as high as 3.6 when a tensile force of 3000 N is applied on the pre-cracked specimen, while that for the low-stress area is 1.102 only. The local dissolution rate at the crack-tip is accelerated with the test time, which would be attributed to the fact that, along with continuous propagation of the crack, the stress concentration at the crack-tip is further increased, which, again, enhances local dissolution. This result reflects exactly the interaction of stress and anodic dissolution at crack-tip during SCC of steel.  相似文献   

3.
冷高压分离器在H2S环境下应力腐蚀开裂敏感性评估   总被引:1,自引:1,他引:0  
李明  李晓刚  陈钢  胡洋  薛光亭 《化工学报》2006,57(12):2997-3004
针对制造过程中由于开孔失误而进行补焊的冷高压分离器在高压、高浓度的H2S环境的使用安全问题,采用了电化学充氢、恒应变和慢拉伸的实验方法,研究了制造冷高压分离器的主体材料16Mn(HIC)钢和普通的16Mn钢及其焊缝的氢扩散系数,在不同H2S浓度、pH值,模拟冷高压分离器操作环境溶液和实际溶液中的腐蚀规律和硫化氢应力腐蚀开裂(SSCC)敏感性,结合实际腐蚀环境的检测和分析结果,对补焊后的冷高压分离器的使用安全给出了综合评估.  相似文献   

4.
J.P. Popi? 《Electrochimica acta》2004,49(27):4877-4891
It was shown that chromium in deaerated sulfuric acid exhibits two stable corrosion potentials, depending whether the metal had previously been in contact with air or subjected to activation by cathodically evolving hydrogen. Electrochemical polarization measurements, as well as measurements of the actual metal dissolution rate at the corrosion potentials, anodic or cathodic polarization, using the analytical determination of Cr ions in the solution, weight-loss of metal, or volumes of hydrogen evolved, showed that hydrogen can evolve on chromium by three different reaction mechanisms. The first one is the electrochemical hydrogen evolution reaction from H+ ions at the bare chromium surface obtained by cathodic activation. This reaction and the active anodic dissolution of chromium determine one stable corrosion potential. The second reaction is the reaction of H+ ions on the oxidized chromium surface which, coupled with the anodic dissolution of passivated chromium determines the other stable corrosion potential. The third one is the “anomalous” or chemical reaction of chromium with water molecules and hydrogen ions whereby hydrogen is liberated. This is a potential independent reaction, occurring on the bare metal surface, and which is at pH <2 several times faster at the corrosion potential than the electrochemical hydrogen evolution reaction. The consequence is that the overall corrosion rate is several times faster than that determined by the usual electrochemical methods. The applicability of the different methods of measuring electrochemical corrosion rates and cathodic current efficiencies in chromium plating is discussed. Also, a possible role of the “anomalous” chromium dissolution in corrosion fatigue and stress corrosion cracking of stainless steels is considered.  相似文献   

5.
郝文魁  刘智勇  杜翠薇  李晓刚 《化工学报》2013,64(11):4143-4152
利用U形弯试样浸泡实验和电化学技术研究了16Mn钢及其模拟热影响区在不同硫化物浓度的碱性(pH=11.7)介质中的应力腐蚀开裂(SCC)行为与机理。结果表明:16Mn钢原始组织、粗晶组织(空冷组织)和硬化组织(淬火组织)在碱性硫化物环境中均能形成保护性腐蚀产物膜、导致电极过程近似呈钝化状态,钝化电流密度依次降低;淬火组织析氢电流密度较高,腐蚀速度较低,长期服役后会造成靠近熔合线部分腐蚀深度大而暴露出残余拉应力区,引起SCC;HAZ中硬化组织、粗晶组织和原始组织在碱性硫化物环境下SCC敏感性逐渐降低,硬化组织具有较明显的SCC敏感性,粗晶组织和原始组织SCC敏感性小;硫化物浓度升高,16Mn钢及其模拟热影响区SCC敏感性增加;16Mn钢焊缝区在碱性硫化物环境中SCC裂纹扩展机制为阳极溶解机制。  相似文献   

6.
This work describes the utilization of a Pt UME in the study of the hydrogen evolution reaction in 0.5 M H2SO4. A non-linear fitting procedure was employed in order to analyze polarization curves obtained at several temperatures (25–75 °C). The results revealed that the traditionally accepted model described by a Volmer–Tafel route fails to fit the obtained experimental data. In this sense, a new model was proposed involving the Volmer–Heyrovsky mechanism, being the Heyrovsky reaction rate determining step. To achieve the best fit between experimental and calculated data, the kinetic equations had to be proposed with a small value of the transfer coefficient (β<0.2). This unusual value was associated with an activationless process, which can also justify the limiting kinetic current (not diffusional) observed. Trying to get further insight into this possibility, the polarization studies were also performed on a surface modified by underpotentially deposited copper. With a degree of coverage as high as 0.8, the only observed effect on the polarization curves was a shift towards minor current values. This shift can be completely justified by the blocking of surface area. A change in mechanism was not observed albeit the Cu UPD eliminated the pairs of neighbor active sites necessary to the Volmer–Tafel pathway.  相似文献   

7.
Ivo Paseka 《Electrochimica acta》2008,53(13):4537-4543
The hydrogen evolution reaction (HER) was studied on Ni-P electrodes prepared by electrodeposition at temperatures varying from 23 °C to 65 °C. The activities for the HER of the electrodes first decreased slowly with the increasing temperature of the Ni-P preparation. A sudden decrease in the HER activity occurred on the electrode prepared at 65 °C. Similar dependence was found for the variation of the amounts of absorbed hydrogen with the electrodeposition temperature of the Ni-P electrodes. The behavior of Ni-P electrodes prepared from Ni-P powders was quite different. (Ni-P powder was prepared by peeling off the Ni-P layer and by milling the leaves of the Ni-P alloy in a vibrating ball mill.) The Ni-P powder electrodes displayed little activity independently of the temperature of the Ni-P powder preparation. It was followed from the results that the high activity for the HER of the layer Ni-P electrodes prepared at T ≤ 53 °C was caused by the internal stress in the layer. The stress originated during the electrodeposition of the Ni-P layer by co-deposited and absorbed hydrogen.  相似文献   

8.
胡万明 《聚氯乙烯》2012,40(10):41-44
通过查找相关材质和施工资料及金相与化学元素分析,找出了聚氯乙烯项目试车前和试车过程中0Cr18Ni9不锈钢管件腐蚀开裂的原因:①采购的0Cr18Ni9不锈钢管件不符合设计要求;②试压水不符合要求,氯离子含量超标,且试压水未及时排放;③缺少有效的监督管理。  相似文献   

9.
Hydrogen evolution reaction (HER) on a polycrystalline Pt electrode has been investigated in Ar-purged acids by surface-enhanced infrared absorption spectroscopy and electrochemical kinetic analysis (Tafel plot). A vibrational mode characteristic to H atom adsorbed at atop sites (terminal H) was observed at 2080-2095 cm−1. This band appears at 0.1 V (RHE) and grows at more negative potentials in parallel to the increase in hydrogen evolution current. Good signal-to-noise ratio of the spectra enabled us to establish the quantitative relation between the band intensity (equivalently, coverage) of terminal H and the kinetics of HER, from which we conclude that terminal H atom is the reaction intermediate in HER and the recombination of two terminal H atoms is the rate-determining step. The quantitative analysis of the infrared data also revealed that the adsorption of terminal H follows the Frumkin isotherm with repulsive interaction.  相似文献   

10.
The stress corrosion cracking (SCC) of carbon steel in simulated fuel-grade ethanol (SFGE) was investigated using electrochemical impedance spectroscopy (EIS) and slow strain rate test (SSRT). Phase angle at low frequency range (<1 Hz) is sensitive to SCC process of carbon steel in SFGE. Phase angle decreases during an active crack growth. Frequency at maximum phase angle also increases towards an active cracking region at around 1 Hz. A transmission line model (TLM) is used to simulate the EIS response for SCC based on real geometrical parameters. By systematically changing the values of the circuit elements, the activities of the sample surface, crack tip and crack wall were studied in detail. By comparing the Bode plots from both experiment and simulation during SCC, a detailed mechanistic picture is derived to describe the behavior of the stress corrosion crack on carbon steel in the fuel-grade ethanolic environment.  相似文献   

11.
The influence of plastic strain on the hydrogen evolution reaction (HER) on polycrystalline nickel, in H2SO4 electrolyte at 293 K, is studied a cathodic potential range. Linear polarisation curves and electrochemical impedance spectra show that the HER is described by a mechanism of Volmer-Heyrovsky, which parameters do not depend on plastic strain. The plastic strain modifies the density and the distribution of dislocations. These evolutions are well understood and lead to changes in the number of hydrogen additional adsorption sites, and then to changes in the current density developed on pre-strained samples. From 0 to 2.4% of plastic strain, the current density increases to reach a maximum value at 2.4%. This current density increase is directly linked to the dislocation density increase. Over 2.4%, the distribution of dislocations is modified and the current density decreases but keeps higher than the current density on an unstrained sample.  相似文献   

12.
A systematic investigation was conducted of the surface properties and the HER at electrodes of nominal composition Ti/RhxTi(1−x)Oy prepared by thermal decomposition (Tcal: 500 °C; tcal: 2 h; O2 flux: 5 dm3 min−1) from salt precursor solutions dissolved in 6.0 mol dm−3 HNO3. Films were characterized ex situ by SEM, EDX, XPS and XRD and in situ by open circuit potential measurements and CV. The electrochemical behaviour was investigated by CV as function of the anodic, Eλ,a, and cathodic, Eλ,c, switching potentials showing the Rh surface oxidation states strongly depend on these experimental variables. Surface Rh-sites are reduced to metallic rhodium in the cathodic potential region while higher oxidation states (I-III) are formed at more positive potentials (E ≥ 0.5 V/RHE). Hydrogen adsorption and desorption peaks as well as a short double layer charging region are observed at intermediate potential values. The HER was investigated by Tafel coefficients and reaction order with respect to H+ as function of nominal Rh-content.  相似文献   

13.
《Ceramics International》2022,48(17):25020-25033
Herein, we have developed a novel hybrid material based on NiCo2S4 (NCS), halloysite nanotubes (HNTs), and carbon as promising electrodes for supercapacitors (SCs). Firstly, mesoporous NCS nanoflakes were prepared by co-precipitation method followed by physically mixing with HNTs and carbon, and screen printed on nickel foam. After ultrasonication, a uniform distribution of the Carbon/HNTs complex was observed, which was confirmed by surface morphological analysis. When used as electrode material, the NCS/HNTs/C hybrid displayed a maximum specific capacity of 544 mAh g?1 at a scan rate of 5 mV s?1. Later, a solid-state hybrid SCs was fabricated using activated carbon (AC) as the negative and NCS/HNTs/C as the positive electrode (NCS/HNTs/C//AC). The device delivers a high energy density of 42.66 Wh kg?1 at a power density of 8.36 kW kg?1. In addition, the device demonstrates long-term cycling stability. Furthermore, the optimized NCS, NCS/HNTs, and NCS/HNTs/C nanocomposites also presented superior hydrogen evolution reaction (HER) performance of 201, 169, and 116 mV in the acidic bath at a current density of 10 mA cm?2, respectively. Thus, the synthesis of NCS/HNTs/C nanocomposite as positive electrodes for hybrid SCs opens new opportunities for the development of next-generation high energy density SCs.  相似文献   

14.
The effects of Ca2+ and Mg2+ ions on the stress corrosion cracking (SCC) susceptibility of UNS N08800 are investigated using constant extension rate tensile (CERT) tests at 300 °C in simulated crevice chemistries. The presence of lead contamination in the crevice chemistries increases significantly the SCC susceptibility of the alloy. The lead-assisted SCC (PbSCC) susceptibility is reduced markedly by the addition of Ca2+ and Mg2+ ions into the solution and this mitigating effect is enhanced by increasing the total concentration of Ca2+ + Mg2+. The CERT test results are consistent with the types of fracture surfaces shown by Scanning Electron Microscopy (SEM). There is a reasonable correlation between the SCC susceptibility and the donor densities in the anodic films in accord with the role of lead-induced passivity degradation in PbSCC.  相似文献   

15.
The enrichment of chloride anion within the occluded cell (OC) for Type 304 austenitic stainless steel in low chloride concentration solution has been investigated by means of a simulated OC. The influence of the enrichment of chloride anion on stress corrosion crack (SCC) of Type 304 stainless steel has been studied. It was observed that the amount of chloride anion migration was proportional to the charge flowing through the anode. Owning to the effects of enrichment of chloride anion, low chloride concentration solution could induce SCC for Type 304 stainless steel.  相似文献   

16.
Ternary nickel-iron-carbon (Ni-Fe-C) alloys have been characterized by means of microstructural and electrochemical techniques in view of their possible applications as electrocatalytic materials for hydrogen evolution reaction (HER). The electrochemical efficiency of the electrodes has been evaluated on the basis of electrochemical data obtained from the steady-state polarization Tafel curves, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) in 1 M NaOH solution at 298 K in the absence and presence of cyanide ion as the poison. Steady-state polarization Tafel curves showed that the Ni-Fe-C electrodes were apparently active for the HER. Therefore, the EIS studies were performed to obtain more precise data and find the source of activity. A surface roughness of more than three orders of magnitude was observed for Ni62Fe35C3 electrode. The rate constants of the forward and backward reactions of Volmer and Heyrovský steps were estimated by using Tafel-impedance data. A comparison between the values obtained for Rf by the EIS and the values obtained for k2 by approximation of Tafel-impedance data revealed that the increase in activity of Ni62Fe35C3 electrode toward the HER was partially (20%) originated from increase in the surface roughness, and mostly (80%) from increase in the intrinsic activity.  相似文献   

17.
The effects of boric acid additions on the pH close to the electrode surface, on the hydrogen evolution reaction and on the internal stress in the plated films were studied for the high speed electroplating of nickel from a nickel sulfamate bath at a current density close to the nickel ion limiting current density. The study was carried out at 50 °C and pH 4.0 using a 1.55 M nickel sulfamate plating bath containing boric acid at concentrations ranging from 0 to 0.81 mol L–1. The variation of the internal strain in the plated nickel films was determined in situ using a resistance wire-type strain gauge fitted to the reverse side of the copper electrode substrate. The solution pH at a distance of 0.1 mm from the depositing nickel film was measured in situ using a miniature pH sensor assembly consisting of a thin wire-type antimony electrode and a Ag/AgCl/sat. KCl electrode housed in a thin Luggin capillary. The addition of boric acid was shown to effectively suppress the hydrogen evolution reaction at nickel electrodeposition rates (18.0 A dm–2) close to the limiting current density (~20 A dm–2). Consequently, the solution pH adjacent to the plating metal surface was maintained at a value close to that in the bulk solution and the development of high internal stresses in the deposited nickel films was avoided.  相似文献   

18.
A study on the electrocatalytic performance of Ni/Zn and Ni–Co/Zn alloys for hydrogen evolution reaction (HER) in alkaline media (30 wt.% KOH solution) has been carried out. After preparing by electrodeposition on stainless steel supports, the alloys were leached of to remove part of the zinc and generate a porous layer. For the developed electrodes, the surface roughness factor, Rf, was evaluated by electrochemical impedance spectroscopy (EIS). The HER on these electrodes was evaluated by means of steady-state polarization curves and EIS. The obtained electrodes were characterized by large Rf for HER, and very low overpotentials at the current density of 250 mA cm−2, η250 ∼ 0.138 V at 30 °C. The high electrode activity was mainly attributed to the high surface area of the developed electrodes.  相似文献   

19.
Poly(ethylene terephthalate) samples with volume fraction levels of crystallinity up to 27% have been evaluated in terms of physical aging, tensile mechanical properties, and environmental stress cracking failures. Specific enthalpy recovery values were found to correspond with transitions from ductile to brittle modes of tensile mechanical failures, exhibited by samples with each level of crystallinity. For samples exposed to aging temperatures from 45 to 60°C, these critical enthalpies decrease linearly with increased crystallinity. The environmental stress cracking behavior of semicrystalline PET was found to depend on both crystallinity levels and physical aging. Samples with higher levels of crystallinity undergo stress cracking failures at lower critical stresses than their less crystalline counterparts. Physical aging, before environmental stress cracking exposure, further decreases these critical stress values and leads to much shorter critical times for failures. It has been shown that the interspherulitic amorphous portion of the material is primarily responsible for the differences in tensile mechanical and environmental stress cracking behaviors, observed as a result of aging and exposure. This amorphous region becomes progressively more restricted with increasing crystallinity as well as with increased aging. It, therefore, requires shorter exposure times to exhibit brittle tensile mechanical failure and environmental stress cracking rupture. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
The reduction of CO2 on bismuth modified Pt(1 1 0) single crystal surfaces has been studied voltammetrically. The effect of bismuth and the amount of formed CO species on the rate of hydrogen evolution has also been investigated. A decrease in the rate of CO2 reduction is observed due to the modification of the surface with bismuth adsorption. This decrease goes beyond the simple third body effect expected from the blockage of active sites on the platinum surface after bismuth adsorption. However, the hydrogen evolution reaction is relatively insensitive to the presence of adsorbed species, in contrast with previous result reported for Pt(1 1 1) and Pt(1 0 0) surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号