首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porous-polyaniline coated Pt electrode (PANI/Pt) was electro-synthesized potentiodynamically in 0.1 M aniline + 0.5 M H2SO4 and morphologically characterized by scanning electron microscopy (SEM). Nature of predominant Fe-species in HCl and H2SO4 was checked by UV-vis spectrophotometry. Electrocatalysis of Fe(III)/Fe(II) reaction was studied by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) for three different solution compositions viz. (i) FeCl3/FeCl2 in 1 M HCl, (ii) FeCl3/FeCl2 in 0.5 M H2SO4 and (iii) Fe2(SO4)3/FeSO4 in 0.5 M H2SO4. For different thicknesses of PANI, the peak current increased irrespective of the nature of the Fe-species, but the polarity of the charge on the Fe-species showed great influence on reversibility of electrocatalysis by PANI/Pt. The Donnan interaction of the polyaniline modified electrode for the three compositions was investigated with respect to [Fe(CN)6]3−/H2[Fe(CN)6]2− which are believed to be the predominant species present in K3[Fe(CN)6]/K4[Fe(CN)6] solution in 0.5 M H2SO4. The electrocatalytic performance of PANI/Pt for Fe(III)/Fe(II) redox reaction was found superior in HCl compared to that in H2SO4.  相似文献   

2.
In this work, the ion exchange characteristics of poly(butyl viologen) (PBV) thin films on a platinum electrode has been investigated by cyclic voltammetric (CV) scans. Since ferrocyanide anions (Fe(CN)64−) were added during the polymerization of the PBV thin-film for its stability, Fe(CN)64− could form charge transfer complex with monomer and co-deposited with polymer. Scanning electrochemical microscopy (SECM) was used to probe the released Fe(CN)64− ions from PBV film with Os(bpy)3Cl2 as a mediator for the approaching process in 0.5 M KCl medium. Mass changes during the redox process of the film were also monitored in-situ by electrochemical quartz crystal microbalance (EQCM). The ion exchange and transport behavior was observed during CV cycling of the film of the SECM and EQCM. The insertion and extraction of anions were found to be potential-dependence. Moreover, the decrease in tip current of released Fe(CN)64− with increasing cycle number accounted for the ion exchange between Fe(CN)64− and Cl in the KCl electrolyte. However, the Fe(CN)64−/Fe(CN)63− redox couple was found to be highly stable between 0.0 and 0.5 V (vs. Ag/AgCl/saturated KCl) in the phosphate buffer solution. Therefore, the electrochemical property of Fe(CN)64−/Fe(CN)63− redox couple was studied at different scan rates using CV technique. The peak currents were directly proportional to the scan rate as predicted for a surface confined diffusionless system. The surface coverage (Γ) and the concentration of Fe(CN)64− were determined to be 1.88 × 10−8 mol/cm2 and 0.641 mol/dm3, respectively. By neglecting cations incorporation during redox reaction of the PBV film and also based on the results obtained from energy-dispersive X-ray spectroscopy for the films of as-deposited, reduced and oxidized states, an ion exchange mechanism was proposed.  相似文献   

3.
The ability of 4-(pyrrole-1-yl) benzoic acid (PyBA) to form monolayer-type carboxylate-derivatized ultra-thin organic films on solid electrode surfaces was explored here to attract coordinatively and immobilize Ni2+ ions at the electrode/electrolyte interface. In the next step, the system was exposed to Fe(CN)63− or Fe(CN)64− solution to form a robust nickel hexacyanoferrate (NiHCF) layer. By repeated and alternate treatments in solutions of PyBA, Ni2+ cations, and Fe(CN)63− or Fe(CN)64− anions, the amount of the material could be increased systematically in a controlled fashion to form three-dimensional multilayered NiHCF-based assemblies. The layer-by-layer method was also extended to the growth of hybrid conducting polymer stabilized NiHCF films in which the initial PyBA-anchored NiHCF layer (formed on glassy carbon) was subsequently exposed (a desired number of times) through alternate immersions to the monomer (3,4-ethylenedioxythiophene), Fe(CN)63− and Ni2+ solutions. During voltammetric potential cycling (electropolymerization) in the external supporting electrolyte solution, poly(3,4-ethylenedioxythiophene) or PEDOT linked NiHCF-based multilayered films were produced. They were characterized by good stability and high dynamics of charge transport.  相似文献   

4.
In this work, we studied interfacial proton transfer of the self-assembled monolayer (SAM) of 1-(12-mercaptododecyl)imidazole on a gold electrode by faradaic impedance titration method with Fe(CN)63− as an anionic redox probe molecule. The surface pK1/2 was found to be 7.3, which was nearly the same as that of 1-alkylimidazole in solution. We also investigated the electrochemical properties of the SAM-modified electrode by cyclic voltammetry. Cyclic voltammetry was performed (1) in the solution containing Fe(CN)63− with repeated alternation of pH values to investigate the electrostatic interaction of the protonated or deprotonated imidazole with Fe(CN)63− and (2) in the acidic or basic electrolyte containing Ru(NH3)63+ as a cationic redox probe to verify the effect of the polarity of a redox probe. We observed the reversible adsorption/desorption of Fe(CN)63− and concluded that the adsorbed Fe(CN)63− catalyzed the electron transfer of both Fe(CN)63− itself and cationic Ru(NH3)63+.  相似文献   

5.
An electrochemical DNA biosensor (EDB) was prepared using an oligonucleotide of 21 bases with sequence NH2-5′-GAGGAGTTGGGGGAGCACATT-3′ (probe DNA) immobilized on a novel multinuclear nickel(II) salicylaldimine metallodendrimer on glassy carbon electrode (GCE). The metallodendrimer was synthesized from amino functionalized polypropylene imine dendrimer, DAB-(NH2)8. The EDB was prepared by depositing probe DNA on a dendrimer-modified GCE surface and left to immobilize for 1 h. Voltammetric and electrochemical impedance spectroscopic (EIS) studies were carried out to characterize the novel metallodendrimer, the EDB and its hybridization response in PBS using [Fe(CN)6]3−/4− as a redox probe at pH 7.2. The metallodendrimer was electroactive in PBS with two reversible redox couples at E°′ = +200 mV and E°′ = +434 mV; catalytic by reducing the Epa of [Fe(CN)6]3−/4− by 22 mV; conducting and has diffusion coefficient of 8.597 × 10−8 cm2 s−1. From the EIS circuit fitting results, the EDB responded to 5 nM target DNA by exhibiting a decrease in charge transfer resistance (Rct) in PBS and increase in Rct in [Fe(CN)6]3−/4− redox probe; while in voltammetry, increase in peak anodic current was observed in PBS after hybridization, thus giving the EDB a dual probe advantage.  相似文献   

6.
Hexacyanoferrate ion, [Fe(CN)6]4−, was immobilized by an ion-exchange reaction on the propylpyridiniumsilsesquioxane chloride polymer thin-film-coated SiO2/Al2O3 surface. The amount of [Fe(CN)6]4− immobilized was 0.22 mmol g−1 with a surface coverage of 9.6×10−6 mmol cm−2. A carbon paste electrode made with this material was prepared and its electrochemical properties studied. The electrode presented two well-defined redox peaks with midpoint potentials, Em, of 0.152 V vs SCE. This potential was not significantly affected by pH changes between 2 and 9.5. The electrode showed much reproducible responses and was successfully used to study the electrochemical oxidation of cysteine.  相似文献   

7.
The surface of an aluminum (Al) electrode was modified with a thin film of nickel hexacyanoruthenate (NiHCR) as a novel electrode material. The modification procedure of Al surface, includes two consecutive procedures: (i) the electroless deposition of metallic nickel on the Al electrode surface from NiCl2 solution, and (ii) the chemical transformation of deposited nickel to nickel hexacyanoruthenate films in solution of 20 mM K3[Ru(CN)6] + 0.5 M KNO3. Cyclic voltammogram of the modified Al electrode showed a well-defined redox reaction due to [NiIIRuIII/II(CN)6]1−/2− system. The effects of different supporting electrolytes and solution pH were studied on the electrochemical characteristics of the modified electrode. The diffusion coefficients of K+ and Na+ cations in the film (D), the transfer coefficient (α), and the charge transfer rate constant at the modifying film/electrode interface (ks), were calculated in the presence of both K+ and Na+ cations. The stability of the modified electrode was investigated under various experimental conditions.  相似文献   

8.
Functionalized polypyrrole film were prepared by incorporation of (Fe(CN)6)4− as doping anion, during the electropolymerization of pyrrole onto a carbon paste electrode (CPE) in aqueous solution by using potentiostatic method. The electrochemical behavior of the (Fe(CN)6)3−/(Fe(CN)6)4− redox couple in polypyrrole was studied by cyclic voltammetry and double step potential chronoamperometry methods. In this study, an obvious surface redox reaction was observed and dependence of this reaction on the solution pH was illustrated. The electrocatalytic ability of polypyrrole/ferrocyanide films modified carbon paste electrode (Ppy/FCNMCPEs) was demonstrated by oxidation of ascorbic acid. It has been found that under optimum condition (pH 7.00), the oxidation of ascorbic acid at the surface of such electrode occurs at a potential about 540 mV less positive than unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α and catalytic reaction rate constant, kh′, were also determined by using various electrochemical approaches.The catalytic oxidation peak current showed a linear dependent on the ascorbic acid concentration and a linear calibration curve was obtained in the range of 4.5×10−4 to 9.62×10−3 M of ascorbic acid with a correlation coefficient of 0.9999. The detection limit (2σ) was determined as 5.82×10−5 M.  相似文献   

9.
The effect of boron doped diamond (BDD) surface termination, immediately after cathodic and anodic electrochemical pre-treatments, on the electrochemical response of a BDD electrode in aqueous media and the influence of the different supporting electrolytes utilized in these pre-treatments on the final surface termination was investigated with [Fe(CN)6]4−/3−, as redox probe, by cyclic and differential pulse voltammetry and electrochemical impedance spectroscopy. The cyclic voltammetry results indicate that the electrochemical behavior for the redox couple [Fe(CN)6]4−/3− is very dependent on the state of the BDD surface, and a reversible response was observed after the cathodic electrochemical pre-treatment, whereas a quasi-reversible response occurred after anodic electrochemical pre-treatment. Differential pulse voltammetry in acetate buffer also showed that the potential window is very much influenced by the electrochemical pre-treatment of the BDD surface. Electroactivity of non-diamond carbon surface species (sp2 inclusions) incorporated into the diamond structure was observed after cathodic and anodic pre-treatments. Electrochemical impedance spectroscopy confirmed the cyclic voltammetry results and indicates that the BDD surface resistance and capacitance vary significantly with the electrolyte and with the electrochemical pre-treatment, caused by different surface terminations of the BDD electrode surface.  相似文献   

10.
Electrochemical activity, morphology and surface electrical conductivity of Boron-Doped Polycrystalline Diamond films prepared by MPCVD have been investigated. Heterogeneous apparent rate constants of three different redox systems, [Fe(CN)6]3−/4−, [IrCl6]2−/3− and [Ru(NH3)6]3+/2+ have been measured by both Cyclic Voltammetry and Electrochemical Impedance Spectroscopy on < 100 > textured films with a predominance of (111) faces: first measurements have been done with [Fe(CN)6]3−/4− only on as grown samples, and secondly after a mild electrochemical pretreatment the three redox systems have been investigated. “As-grown” samples showed a moderate average activity which was related to the presence of a minority of electronically conducting areas among insulating zones. Electrochemical treatment in neutral conditions substantially increased the activity and heterogeneous apparent rate constants kapp for the three couples were measured in the range of 10− 2 cm s− 1 with a good stability in time. Current-sensing AFM images performed ex situ showed that the electrochemically pre-treated material presented a high superficial conductivity whereas the grown sample showed major area of low conductivity.  相似文献   

11.
A novel ITO electrode surface modified with spherical and rod-shaped gold nanoparticles was prepared by a surfactant-assisted seeding growth approach, which provided a biocompatible matrix for the immobilization of hemoglobin (Hb). By electrochemical impedance measurements, gold nanoparticles modification and Hb immobilization on the electrode surfaces were characterized using [Fe(CN)6]3−/[Fe(CN)6]4− redox probe. Owing to the promoted electron transfer of Hb by gold nanoparticles, the Hb immobilized gold nanoparticles-modified ITO (Hb/Au/ITO) electrode exhibited an effective catalytic response to the reduction of H2O2 with good reproducibility and stability. The linear relationship existed between the catalytic current and the H2O2 concentration in the range of 1 × 10−5 to 7 × 10−3 M. The detection limit (S/N = 3) was 4.5 × 10−6 M.  相似文献   

12.
We report the electrochemical characterization of chitosan films deposited at gold electrodes from an acidic solution at reducing potentials. Cyclic voltammetry was used to characterize the deposition and electroactivity of chitosan coated gold electrodes. Chitosan films were found to deposit at gold electrodes at potentials more negative than −1.0 V versus Ag/AgCl, a potential associated with the onset of water reduction and increase in pH near the electrode. The chitosan films are electrochemically inactive; similar background charging currents are observed at bare gold and chitosan coated electrodes. The chitosan films are permeable to both cationic [Ru(NH3)63+/2+] and anionic [Fe(CN)63−/4−] redox couples, but anionic complexes are retained in the chitosan film. Semiintegral analysis was used to examine adsorbed redox species at the chitosan coated electrode surface. Electrochemical parameters, including apparent diffusion coefficients for the redox probes at the electrodeposited chitosan modified electrodes are presented and are comparable to values reported for cast chitosan films.  相似文献   

13.
The electrochemical modification of the glassy carbon (GC) electrode surface with biphenyl, 1-naphthyl, 2-naphthyl, 4-bromophenyl, 4-decylphenyl and 4-nitrophenyl groups was performed by the diazonium reduction method. The blocking behaviour of aryl films grafted by three different procedures was compared. Oxygen reduction was studied on these modified GC electrodes using the rotating disk electrode (RDE) method. The highest blocking efficiency for O2 reduction was observed for 4-bromophenyl groups. The barrier properties of aryl-modified GC surfaces were also characterised using Fe(CN)63− and dopamine redox probes. Electrochemical measurements were carried out in 0.1 M K2SO4 containing 1 mM K3Fe(CN)6 and in 0.1 M H2SO4 containing 1 mM dopamine using cyclic voltammetry (CV). The blocking action varied significantly depending on the surface modifier used and the solution based redox species studied.  相似文献   

14.
Nitrogen-doped hydrogenated amorphous carbon thin films (a-C:N:H, N-doped DLC) were synthesized with microwave-assisted plasma-enhanced chemical vapor deposition widely used for DLC coating such as the inner surface of PET bottles. The electrochemical properties of N-doped DLC surfaces that can be useful in the application as an electrochemical sensor were investigated. N-doped DLC was easily fabricated using the vapor of nitrogen contained hydrocarbon as carbon and nitrogen source. A N/C ratio of resulting N-doped DLC films was 0.08 and atomic ratio of sp3/sp2-bonded carbons was 25/75. The electrical resistivity and optical gap were 0.695 Ω cm and 0.38 eV, respectively. N-doped DLC thin film was found to be an ideal polarizable electrode material with physical stability and chemical inertness. The film has a wide working potential range over 3 V, low double-layer capacitance, and high resistance to electrochemically induced corrosion in strong acid media, which were the same level as those for boron-doped diamond (BDD). The charge transfer rates for the inorganic redox species, Fe2+/3+ and Fe(CN)64−/3− at N-doped DLC were sufficiently high. The redox reaction of Ce2+/3+ with standard potential higher than H2O/O2 were observed due to the wider potential window. At N-doped DLC, the change of the kinetics of Fe(CN)63−/4− by surface oxidation is different from that at BDD. The rate of Fe(CN)63−/4− was not varied before and after oxidative treatment on N-doped DLC includes sp2 carbons, which indicates high durability of the electrochemical activity against surface oxidation.  相似文献   

15.
A cetyltrimethyl ammonium bromide modified carbon paste electrode (CTAB/CPE) was developed in this work based on the surface modification method. The improved electrochemical response of K4Fe(CN)6 at this electrode indicated that CTAB could change the surface property of carbon paste electrodes (CPEs), which was demonstrated by the electrochemical impedance spectroscopy (EIS). In 0.1 mM [Fe(CN)6]3−/4−, a low exchange current (i0) of 2.72×10−7 A at bare CPE was observed while that at CTAB/CPE was 6.79×10−5 A. The effect of CTAB concentration on the electrode quality revealed that CTAB formed a compact monolayer on the electrode surface with high density of positive charges directed outside the electrode. This electrode showed strong accumulation ability toward Fe(CN)64− and can also accumulate Co(phen)32+ by the adsorption of the organic ligands in the hydrophobic area of the monolayer. The electrode was applied to the immobilization of DNA, which was characterized by the isotherm adsorption of Co(phen)32+.  相似文献   

16.
L. Agüí 《Electrochimica acta》2006,51(12):2565-2571
The construction and characterization of a new carbon-felt electrode design of small dimensions is reported. The electrode was checked by testing the electrochemical behaviour of the Fe(CN)63−/4− model system, as well as of several phenolic compounds with xenoestrogenic properties. The use of a carbon-felt cylinder electrode whose heigh was insulated with a poly(ethylene) cover and with two exposed bases of 2.0 mm diameter, resulted in an enhancement of the Fe(CN)63−/4− voltammetric peak current with respect to a conventional glassy carbon electrode with a similar outer surface, which suggests a high contribution of the redox probe solution trapped in the three-dimensional structure of the electrode. The contribution of the electrolysis of the redox probe trapped in the electrode matrix to the voltammetric response, as well as that of the mass transfer from bulk solution, were investigated. The voltammetric behaviour of phenolic compounds with xenoestrogenic properties showed adsorption onto the carbon-felt electrode. Penetration of these compounds into the electrode at open circuit was demonstrated. Two possible applications of the new electrode design are outlined: flow analysis with electrochemical detection of phenolic endocrine disruptors and the possibility of using it for removal of these compounds.  相似文献   

17.
The preparation of copper(II) hexacyanoferrate (CuHCF) films on the surface of gold electrodes as well as their characterization in solutions of various alkali metal and NH4+ cations and in the presence of thallium(I) are described. The electrochemical quartz crystal microbalance and cyclic voltammetric techniques were used. In 0.50 M lithium nitrate, even at submillimolar concentration of Tl(I), the formal potential of CuHCF was shifted to more positive values. At higher Tl(I) concentrations, the formal potential of the CuHCF redox reaction changed linearly with the logarithm of Tl(I) concentration (in the 0.50 M solution of lithium or another alkali metal nitrate). From such dependencies, selectivity coefficients KTl/M were calculated, and they show that the CuHCF film on the gold electrode interacts preferentially with Tl(I). High affinity of Tl(I) to copper hexacyanoferrate, that was observed in the presence of alkali metal cations, was explained by relatively strong donor-acceptor interactions of Tl(I) ions with nitrogen in CN groups of the CuHCF film.It was also shown for simple M4[Fe(CN)6] metal ferrocyanate salts (where M = Li+, Na+, K+, Rb+, Cs+ and Tl+) that there is a preferential interaction of Tl+ with CN group consistent with formation of a Tl-NC-Fe bridge.  相似文献   

18.
Osmium hexacyanoferrate films have been prepared using repeated cyclic voltammetry, and the deposition process and the films’ electrocatalytic properties in electrolytes containing various cations have been investigated. The cyclic voltammograms recorded the deposition of osmium hexacyanoferrate films directly from the mixing of Os3+ and Fe(CN)63− ions from solutions containing various cations. An electrochemical quartz crystal microbalance, cyclic voltammetry, and UV-visible spectroscopy were used to study the growth mechanism of the osmium hexacyanoferrate films. The osmium hexacyanoferrate films showed a single redox couple, and the redox reactions included “electron transfer” and “proton transfer” with a formal potential that demonstrates a proton effect in acidic solutions up to a 12 M aqueous HCl solution. The electrochemical and electrochemical quartz crystal microbalance results indicate that the redox process was confined to the immobilized osmium hexacyanoferrate film. The electrocatalytic reduction of dopamine, epinephrine, norepinephrine, S2O32−, and SO52− by the osmium hexacyanoferrate films was performed. The preparation and electrochemical properties of co-deposited osmium(III) hexacyanoferrate and copper(II) hexacyanoferrate films were determined, and their two redox couples showed formal potentials that demonstrated a proton effect and an alkaline cation effect, respectively. Electrocatalytic reactions on the hybrid films were also investigated.  相似文献   

19.
The local electrochemical activity of polytetrafluorethylene (PTFE) membranes coated with diamond-like carbon (DLC) was investigated using scanning electrochemical microscopy (SECM). During z-approach curves in the feedback mode of SECM unexpected local variations in the electron-transfer rate of [Fe(CN)6]3−/4− and [Ru(NH3)6]3+/2+ were observed. This local heterogeneity of the electrochemical activity was further evaluated in a system adapted from SO2 gas sensors. In this case, the Cu2+/+ couple is used as dissolved reversible redox system. Reaction of SO2 with Cu2+ yields Cu+ which is re-oxidized at the DLC-coated PTFE membrane. Gas permeation/tip-collection mode SECM experiments allowed visualizing the local pore distribution as sites where the SO2 is permeating through the membrane and hence formation of Cu+ takes place.  相似文献   

20.
Electrogeneration of soluble Prussian Blue (PB) during the oxidation-reduction of the Fe(CN)63−/Fe(CN)64− system has been detected using bidimensional spectroelectrochemistry (BSEC). This new technique allows us to obtain simultaneously two different spectroscopic signals together with an electrochemical signal, each one containing different information. Starting from pure Fe(CN)64− solutions, some experimental conditions under which soluble PB appears, have been analysed. Fe(CN)64−/supporting electrolyte concentration ratio and potential scan rate have been found as the most influential factors. All experiments show clearly the generation of soluble PB but in no case the insoluble form has been detected. From the results, PB generation can be explained as a surface chemical process coupled with the electron transfer reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号