首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The linear actuation of poly-3,4-ethylenedioxythiophene (PEDOT) films polymerized at different potentials (0.8-1.3 V) at −27 °C in propylene carbonate (PC) solutions of TBACF3SO3 (tetrabutylammonium trifluoromethanesulfonate) was examined under isotonic (constant force) and isometric (constant length) conditions. The actuation properties were evaluated by electrochemomechanical deformation measurements (ECDM) during cyclic voltammetry, square wave potential steps and long term cycling. The ECDM response revealed mixed ion actuation behaviour for PEDOT films polymerized at the potential extremes of 0.8 and 1.3 V. At intermediate polymerization potentials from 0.9 to 1.2 V, cation-driven actuation was observed involving immobilized triflate anions (CF3SO3). Long term experiments (50 cycles) showed that films prepared at polymerization potentials of 0.8 V exhibited mainly anion-driven actuation, during potential steps to and from 1.0 V; conversely PEDOT prepared at a polymerization potential of 1.1 V showed exclusively cation-driven actuation. PEDOT films prepared at a polymerization potential of 1.1 V showed the maximum cation-driven actuation during cyclic voltammetry experiments including long term cycling. SEM images showed an open porous structure in all of the PEDOT films.  相似文献   

2.
Free standing PEDOT [poly(3,4-ethylenedioxythiophene)] films (with surface conductivities of 200-400 S cm−1) were generated in tetrabutylammonium trifluromethanesulfonate (TBACF3SO3) electrolytes by potentiostatic (EP 1.05 V vs. Ag wire) electropolymerisation in propylene carbonate (at −27 °C) and methyl benzoate (at −4 °C). Films obtained in the TBACF3SO3 electrolytes showed a length increase of 2-3% during scans to negative potentials under isotonic (constant load 1.35 MPa) and stress of 0.3 MPa under isometric (constant length) conditions. Cation movement occurred due to immobilisation of CF3SO3 anions during electropolymerisation. The system showed good stability and low creep during square wave electrochemical cycling in the potential range from 0.0 to 1.0 V. The surface morphology (SEM) of the PEDOT films showed that the polymer structure is dependent upon the solvent used during the polymerisation process.  相似文献   

3.
The electrochemical behavior of B1.0C2.4N1.0 thin film was investigated in acidic, neutral and alkaline solutions. The anodic polarization curve of the film in 1 M NaOH showed the anodic dissolution of the film. The curve of the film in 1 M HCl showed no anodic dissolution. The cathodic polarization curve in 1 M NaCl showed shift to a negative potential side, but the anodic polarization curve was the same as that of Pt. The anodic dissolution in 1 M NaOH depended on potentials, that is, no anodic dissolution was recognized in a potential range of −0.2 to 0.1 V but the dissolution rate increased with increasing potential in a range of 0.1-0.6 V. The anodic current density of the film is directly proportional to the dissolution rate at potentials higher than 0.1 V. The dissolution rate of the film was increased with increasing solution pH.  相似文献   

4.
Composite G/PPy/PPy(La1−xSrxMnO3)/PPy electrodes made of the perovskite La1−xSrxMnO3 embedded into a polypyrrole (PPy) layer, sandwiched between two pure PPy films, electrodeposited on a graphite support were investigated for electrocatalysis of the oxygen reduction reaction (ORR). PPy and PPy(La1−xSrxMnO3) (0≤ x ≤0.4) successive layers have been obtained on polished and pretreated graphite electrodes following sequential electrodeposition technique. The electrolytes used in the electrodeposition process were Ar saturated 0.1 mol dm−3 pyrrole (Py) plus 0.05 mol dm−3 K2SO4 with and without containing a suspension of 8.33 g L−1 oxide powder. Films were characterized by XRD, SEM, linear sweep voltammetry, cyclic voltammetry (CV) and electrochemical impedance (EI) spectroscopy. Electrochemical investigations were carried out at pH 12 in a 0.5 mol dm−3 K2SO4 plus 5 mmol dm−3 KOH, under both oxygenated and deoxygenated conditions. Results indicate that the porosity of the PPy matrix is considerably enhanced in presence of oxide particles. Sr substitution is found to have little influence on the electrocatalytic activity of the composite electrode towards the ORR. However, the rate of oxygen reduction decreases with decreasing pH of the electrolyte from pH 12 to pH 6. It is noteworthy that in contrast to a non-composite electrode of the same oxide in film form, the composite electrode exhibits much better electrocatalytic activity for the ORR.  相似文献   

5.
The oxide films of nickel electrode formed in 30 wt.% KOH solution under potentiodynamic conditions were characterized by means of electrochemical, in situ PhotoElectrochemistry Measurement (PEM) and Confocal Microprobe Raman spectroscopic techniques. The results showed that a composite oxide film was produced on nickel electrode, in which aroused cathodic or anodic photocurrent depending upon polarization potentials. The cathodic photocurrent at −0.8 V was raised from the amorphous film containing nickel hydroxide and nickel monoxide, and mainly attributed to the formation of NiO through the separation of the cavity and electron when laser light irradiates nickel electrode. With the potential increasing to more positive values, Ni3O4 and high-valence nickel oxides with the structure of NiO2 were formed successively. The composite film formed in positive potential aroused anodic photocurrent from 0.33 V. The anodic photocurrent was attributed the formation of oxygen through the cavity reaction with hydroxyl on solution interface. In addition, it is demonstrated that the reduction resultants of high-valence nickel oxides were amorphous, and the oxide film could not be reduced completely. A stable oxide film could be gradually formed on the surface of nickel electrode with the cycling and aging in 30 wt.% KOH solution.  相似文献   

6.
Titanium dioxide films were anodically formed at various potentials up to 65 V in 1 M H2SO4. Oxide films were characterized by performing various techniques, including electrochemical impedance spectroscopy, scanning electron microscopy, Raman spectroscopy, ellipsometry and diffuse reflectance FT-IR spectroscopy. Low voltage anodization (up to 10 V) results to amorphous TiO2, whereas at higher applied potentials (up to 65 V), anatase is the predominant form. Anatase films were further hydroxylated with an acidic agent and the effect of this treatment on the overall impedance of the electrodes was studied with impedance spectroscopy. The potential use of anodic (anatase) Ti/TiO2 electrodes in the development of impedimetric immunosensors is also demonstrated by monitoring the immunoreaction of avidin/anti-avidin with different instrumental approaches based on a FRA analyzer, an LCR-meter and a home-built charge integrator (Multipulser).  相似文献   

7.
Electrodeposition of PbTe thin films from acidic nitrate baths   总被引:1,自引:0,他引:1  
Electrodeposition of PbTe thin films from an acidic nitric bath was systematically investigated to understand the kinetics and the effect of electrodeposition conditions on film composition, crystallographic structure, texture and grain size. The electroanalytical studies employed initially with a rotating disk electrode to investigate the kinetics associated with Te, Pb and PbTe electrodeposition. The results indicated that the PbTe thin films were obtained by the underpotential deposition (UPD) of Pb atoms onto the overpotentially deposited Te atoms on a substrate.Based on these studies, PbTe thin films were potentiostatically electrodeposited using e-beam evaporated gold thin films on silicon substrate to investigate the effect of various deposition conditions on film composition and microstructure. The data indicated that the microstructure, composition and preferred film growth orientation of PbTe thin films strongly depended on the applied potential and electrolyte concentration. At −0.12 V, the film was granular, dense, and preferentially oriented in the [1 0 0] direction. At potentials more negative than −0.15 V, the film was dendritic and preferentially oriented in the [2 1 1] direction. A smooth, dense and crystalline film with nearly stoichiometric composition was obtained at −0.12 V from a solution containing 0.01 M HTeO2+, 0.05 Pb2+ and 1 M HNO3.  相似文献   

8.
The films that form on pure iron during potentiodynamic anodic polarization in aqueous borate buffer were investigated by surface enhanced Raman spectroscopy (SERS), and by electrochemical impedance spectroscopy and Mott-Schottky analysis at selected potentials. According to SERS, the passive film is a bilayer film with an outer layer of an as yet undetermined Fe(III)oxide/hydroxide, identified by a strong Raman peak at 560 cm−1. The inner layer was a spinel compound. The capacitances of passive iron were frequency dependent and a constant phase element (CPE) best described the frequency dispersion. Current increases in cathodic polarization scans confirmed the accuracy of flatband potentials calculated from Mott-Schottky tests at two different film formation potentials. Both films were found to be n-type and flatband potentials of −846 and −95 mV vs. SHE and carrier densities of 1.6 × 1022 and 8.3 × 1020/cm3 were found for films grown at −500 and +1000 mV, respectively. The cathodic polarization curve of passivated iron exhibited a complex shape that was explained by the electronic properties of iron's passive and prepassive films. The reductive dissolution of the films abruptly began when the potential was lowered below their flatband potentials. It is suggested that the cathodic polarization behavior contributes to iron's susceptibility to localized corrosion.  相似文献   

9.
Niobium has been anodized at a constant current density to 10 V with a current decay in 0.8 mol dm−3 K2HPO4-glycerol electrolyte containing 0.08-0.65 mass% water at 433 K to develop porous anodic oxide films. The film growth rate is markedly increased when the water content is reduced to 0.08 mass%; a 28 μm-thick porous film is developed in this electrolyte by anodizing for 3.6 ks, while the thickness is 4.6 and 2.6 μm in the electrolytes containing 0.16 and 0.65 mass% water respectively. For all the electrolytes, the film thickness changes approximately linearly with the charge passed during anodizing, indicating that chemical dissolution of the developing oxide is negligible. SIMS depth profiling analysis was carried for anodic films formed in electrolyte containing ∼0.4 mass% water with and without enrichment of H218O. Findings disclose that water in the electrolyte is a predominant source of oxygen in the anodic oxide films. The anodic films formed in the electrolyte containing 0.65 mass% water are practically free from phosphorus species. Reduction in water content increased the incorporation of phosphorus species.  相似文献   

10.
Hydrous manganese oxide was deposited on graphite substrates at anodic potentials of 0.5-0.95 V versus saturated calomel electrode (SCE) in 0.25 M Mn(CH3COO)2 solution at 25 °C. Morphology of manganese oxide prepared was examined by scanning electron microscopy (SEM). Manganese oxide deposited at various anodic potentials was evaluated by cyclic voltammetry with various potential scan rates in different electrolytes. Results indicated that the pseudocapacitive behaviors of manganese oxide were excellent both in 2 M KCl and 2 M (NH4)2SO4 solutions at room temperature. Manganese oxide deposited at 0.5 V versus SCE showed better capacitive behaviors, the specific capacitances were 275 F/g in 2 M KCl solution and 310 F/g in 2 M (NH4)2SO4 solution, respectively. Besides, better electrochemical reversibility could be obtained in 2 M KCl solution.  相似文献   

11.
Conjugated polymers continue to be of interest as possible corrosion-control coatings for metal alloys. In this work, electrochemical interactions between polypyrrole (PPy) films and the aluminum alloy 2024-T3 (AA) were investigated by electrochemical polarization and galvanic coupling techniques in dilute Harrison's solution (0.35 wt% (NH4)2SO4, 0.05 wt% NaCl). A two-compartment electrochemical cell was used for the galvanic coupling measurements which permitted assessment of the role of dissolved oxygen by segregating the PPy film and AA in individual compartments. Electroactive 4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt (BDA or Tiron) and electroinactive benzene-1,3-disulfonic acid, disodium salt (BDS) were used as dopants to study the mediating effect (if any) of BDA on the coupling behavior. The results indicate that oxygen reduction mediated by the PPy coating dominates the coupling interaction. The electrochemical polarization state of AA 2024-T3 in a pinhole simulating a PPy coating defect was characterized by the potential measured immediately after decoupling, by the anodic hydrogen evolution, and by galvanodynamic polarization. The results support the conclusion that the alloy in the coating defect was electrochemically active, not passive, during coupling with PPy. The anodic protection model commonly accepted for ferrous metals does not appear to apply to AA 2024-T3.  相似文献   

12.
An electrochemical biosensor was constructed based on the immobilization of myoglobin (Mb) in a composite film of Nafion and hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) for a modified carbon paste electrode (CPE). Direct electrochemistry of Mb in the Nafion-BMIMPF6/CPE was achieved, confirmed by the appearance of a pair of well-defined redox peaks. The results indicate that Nafion-BMIMPF6 composite film provided a suitable microenvironment to realize direct electron transfer between Mb and the electrode. The cathodic and anodic peak potentials were located at −0.351 V and −0.263 V (vs. SCE), with the apparent formal potential (Ep) of −0.307 V, which was characteristic of Mb Fe(III)/Fe(II) redox couples. The electrochemical behavior of Mb in the composite film was a surface-controlled quasi-reversible electrode process with one electron transfer and one proton transportation when the scan rate was smaller than 200 mV/s. Mb-modified electrode showed excellent electrocatalytic activity towards the reduction of trichloroacetic acid (TCA) in a linear concentration range from 2.0 × 10−4 mol/L to 1.1 × 10−2 mol/L and with a detection limit of 1.6 × 10−5 mol/L (3σ). The proposed method would be valuable for the construction of a third-generation biosensor with cheap reagents and a simple procedure.  相似文献   

13.
The research reports on the electrocatalytic properties of IrOx, Pt, and composite IrOx-Pt-IrOx thin films prepared by physical vacuum deposition technique of dc magnetron sputtering. The efficiency toward the oxygen evolution in aqueous solutions and in a laboratory electrolyser with polymer proton conductive electrolyte has been investigated using the conventional electrochemical methods of cyclic voltammetry and steady state polarisation curves. The sputtered films have demonstrated excellent catalytic properties, mechanical stability, and high corrosion resistance under intensive oxygen evolution. The best performance (anodic current density of 0.84 A cm−2 at potential of 1.8 V) has shown the IrOx film with loading of 0.2 mg cm−2. Some data on the catalytic activity toward oxygen reduction reaction in aerated 0.5 M H2SO4 solution and the possibility to use the method of magnetron sputtering for preparation of cost effective composite catalytic films with bifunctional properties are also presented and discussed.  相似文献   

14.
Self-organized macroporous tungsten trioxide (WO3) films are obtained by anodic oxidation of DC-sputtered tungsten (W) layers on 10 mm × 25 mm indium tin oxide (ITO)-coated glass. Under optimized experimental conditions, uniformly macroporous WO3 films with a thickness of ca. 350 nm are formed. The film shows a connected network with average pore size of 100 nm and a pore wall thickness of approximately 30 nm. The anodized film becomes transparent after annealing without significant change in macroporous structure. In 0.1 M H2SO4, the macroporous WO3 films show enhanced electrochromic properties with a coloration efficiency of 58 cm2 C−1. Large modulation of transmittance (∼50% at 632.8 nm) and a switching speed of about 8 s are also achieved with this macroporous film.  相似文献   

15.
Electropolishing of NiTi shape memory alloys in methanolic H2SO4   总被引:2,自引:0,他引:2  
The electropolishing of NiTi shape memory alloys was surveyed electrochemically. Anodic polarization of NiTi up to 8 V was performed in various aqueous and methanolic H2SO4 solutions. The passivity could be overcome in methanolic solutions with 0.1moldm−3≤CH2SO4≤7moldm−3. The dissolution kinetics was studied in dependence of the polarization potential, the H2SO4-concentration, the water concentration and the temperature. For lower concentrations of sulfuric acids (CH2SO4≤0.3moldm−3) electropolishing conditions were not observed for potentials up to 8 V. The dissolution remained under Ohmic control. In the concentration range from 1 to 7 mol dm−3 a potential independent limiting current was registered depending linearly on the logarithm of concentration. The best results were obtained with a 3 mol dm−3 methanolic sulfuric acid at 263 K which yielded an electropolishing current of 500 A m−2 at a potential of 8 V. Surface roughness as well as current efficiency showed an optimum under these conditions.  相似文献   

16.
The present study reveals the formation of porous anodic films on titanium at an increased growth rate in hot phosphate/glycerol electrolyte by reducing the water content. A porous titanium oxide film of 12 μm thickness, with a relatively low content of phosphorus species, is developed after anodizing at 5 V for 3.6 ks in 0.6 mol dm−3 K2HPO4 + 0.2 mol dm−3 K3PO4/glycerol electrolyte containing only 0.04% water at 433 K. The growth efficiency is reduced by increasing the formation voltage to 20 V, due to formation of crystalline oxide, which induces gas generation during anodizing. The film formed at 20 V consists of two layers, with an increased concentration of phosphorus species in the inner layer. The outer layer, comprising approximately 25% of the film thickness, is developed at low formation voltages, of less than 10 V, during the initial anodizing at a constant current density of 250 A m−2. The pore diameter is not significantly dependent upon the formation voltage, being ∼10 nm.  相似文献   

17.
Roto Roto 《Electrochimica acta》2006,51(12):2539-2546
The electrochemical impedance spectra of MgMnCO3 LDH films oxidized at different dc potentials were recorded. The results were fitted to a Randles type cell by replacing the Warburg impedance with a mass transfer resistance in parallel with a constant phase element. The films charge transfer resistances decreased dramatically at the onset of manganese oxidation. In thin films, Rct decreased from 104 Ω for an un-oxidized film to a minimum of 40 Ω in a film oxidized at 0.32 V, before increasing back to 104 Ω in a film oxidized at 0.5 V. Iodometry measurements show these changes correspond to increases in the manganese average valence in the films from 3.09+ prior to oxidation, to 3.80+ at 0.32 V and 3.95+ at 0.5 V. In thicker films, however, a much higher dc potential, 1.0 V, was required to return Rct to 104 Ω. There was also less change in the manganese average valence in the thicker films. Oxidation at 1.0 V only increased the manganese valence to 3.33+. For the partially oxidized films, the Nyquist plots consisted of depressed semicircles at high frequency, followed by linear regions at lower frequency where the impedance was controlled by mass transport. The effective diffusion coefficient estimated from the low frequency impedance was 1 × 10−9 cm2 s−1, consistent with proton diffusion in solid electrodes. The impedance spectrum of a partially oxidized film reduced at −0.2 V was similar to that of the un-oxidized film.  相似文献   

18.
To improve the oxidation resistance of TiAl intermetallic compound under high temperature condition, cathodic co-deposition of Al-Cr and Al-Ni alloy was carried out by constant potential control or potential pulse control in AlCl3-NaCl-KCl molten salt containing CrCl2 and/or NiCl2 at 423 K. Cathodic reduction of Ni and Cr starts at potential of 0.8 and 0.15 V versus Al/Al3+ in the molten salt, respectively. The co-deposition of Al, Cr, and Ni occurred at potentials more negative than −0.1 V to form a mixture of intermetallic compounds of Cr2Al, Ni3Al, and Al3Ni. Concentration of Cr in the deposit was enhanced to 43 at% at −0.1 V; however, concentration of Ni in the deposit was 6 at% at the same potential. The concentration of Ni further decreased with more negative potential to 1 at% at −0.4 V. The potential pulse technique enhanced the Ni concentration in the deposit to about 30 at%, due to anodic dissolution of Al content from the deposit at the higher side of potential on the potential pulse electrolysis.  相似文献   

19.
Nitro-group-substituted oligopyrene (ONP) film with fairly high electrical conductivity (1.25 × 10−1 S cm−1) and good thermal stability was electrochemically synthesized by direct anodic oxidation of its monomer 1-nitropyrene (NP) in boron trifluoride diethyl etherate (BFEE). The oxidation potential of NP in this medium was determined to be 1.12 V vs. SCE, which was lower than that in acetonitrile +0.1 mol L−1 Bu4NBF4 (1.27 V vs. SCE). ONP films obtained from this medium showed good redox activity and structural stability in both BFEE and concentrated sulfuric acid. Fourier transform infrared spectra and theoretical calculations showed that the electropolymerization of the NP monomer mainly occurred at the C(3), C(6) and C(8) positions. The fluorescence spectra suggested that soluble ONP emits strong blue or green fluorescence when excited at 402 nm or 504 nm, respectively. Scanning electron microscopy showed that highly crystalline nitro-group-substituted oligopyrene was formed on the electrode surface. All these results indicate that as-prepared ONP film has many potential applications in various fields.  相似文献   

20.
The electrochemical reduction of nitrate on tin cathode at very high cathodic potentials was studied in 0.1 M K2SO4, 0.05 M KNO3 electrolyte. A high rate of nitrate reduction (0.206 mmol min−1 cm−2) and a high selectivity (%S) of nitrogen (92%) was obtained at −2.9 V versus Ag/AgCl. The main by-products were ammonia (8%) and nitrite (<0.02%). Small amounts of N2O and traces of NO were also detected.As the cathodic potential increases, the %S of nitrogen increases, while that of ammonia displays a maximum at −2.2 V. The %S of nitrite decreases from 65% at −1.8 V to <0.02% at −2.4 V. The kinetic analysis indicated that the formation of nitrogen and ammonia proceeds through the intermediate nitrite.The reduction follows first order kinetics for both nitrate and nitrite at more cathodic potentials than −2.4 V, while at less negative potentials the kinetics is more complicated.The %Faradaic efficiency (%FE) of the reduction at −2.9 V was about 60% initially and decreased to 22% at 40 min.A cathodic corrosion of tin was observed, which was more intensive in the absence of nitrate. At potentials more negative than −2.4 V, small amounts of tin hydride were detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号