共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, surface potential and surface pH changes over a zinc/steel galvanic couple corroding in artificial seawater (ASW) at 60 and 90% RH have been investigated. The results from surface potential and surface pH measurements were substantiated by the surface observation of the corroded sample during and after the corrosion test. The potential difference over the zinc and steel surface in 90% RH was very low (less than 200 mV) showing that whole steel surface was under galvanic protection. On the other hand, in 60% RH, after several days of corrosion the potential difference between the zinc coating and the steel surface was very high (more than 500 mV) and hence the galvanic protection was limited to interface region. The X-ray analysis of the sample corroded in 60% RH has shown that the zinc corrosion products were deposited on the steel surface near the interface, the same region has shown a low pH compared to than in other part of the steel surface. This led to conclude that with the progress of corrosion, the coating surface of zinc coated steel acidifies by the hydrolysis reaction of the dissolved zinc ions, and the iron surface showed the alkalinity by the oxygen reduction reaction. Moreover, the parts of the steel surface covered with zinc corrosion products had developed relatively less noble potential than other parts indicating that zinc corrosion products took a role to protect the base steel against corrosion. It was assumed that this behavior was related to a combination of the water absorbing capability of zinc corrosion products and adsorption of zinc ion on the steel surface due to low pH. 相似文献
2.
Numerical analysis of galvanic corrosion of Zn/Fe interface beneath a thin electrolyte 总被引:1,自引:0,他引:1
Jong-Min Lee 《Electrochimica acta》2006,51(16):3256-3260
A numerical analysis of galvanic corrosion of a Zn/Fe interface beneath a thin layer electrolyte is presented. Specifically, a circular defect, where the zinc coating has been removed, is considered. It is assumed that both oxygen reduction and iron oxidation can occur on the Fe surface, while only zinc oxidation occurs on the Zn surface. The importance of electrolyte thickness and conductivity and defect radius is considered. It is assumed that the iron and zinc oxidation rates are described by a Tafel relationship. If the kinetic parameters of the oxidation reactions are known, the cathodic protection of Fe is a function of a Wagner number, the ratio of the electrolyte thickness to the defect radius, and the ratio of the radius of the defect to the outer radius of the zinc layer. 相似文献
3.
4.
5.
The spatial distribution of Zn2+ during galvanic corrosion of a model Zn/steel couple in 0.01 M NaCl was investigated using a scanning zinc disk electrode. The couple had a coplanar arrangement of a steel substrate with an electroplated zinc layer at the center. During galvanic corrosion, the marked changes in the Zn2+ concentration were confined to a thin solution layer ca. 1.0 mm thick above the couple surface. In this thin solution layer above the zinc layer, a higher concentration region of Zn2+ in the range of 5-18 mM extended around the zinc layer in the solution during galvanic corrosion. Conversely, above the steel surface distant from the zinc layer, the surface concentration of Zn2+ was almost zero during galvanic corrosion. On this surface, the precipitation of zinc corrosion products due to the hydrolysis reaction of Zn2+ was observed. The distribution of the Zn2+ concentration supported that Zn2+ acted as a buffer that suppressed the increased pH due to the cathodic reaction on the steel surface near the zinc layer and almost no corrosion products formed there. The spatial distribution of Zn2+ is discussed in relation to the distributions of potential and pH and the surface morphology of the galvanic couple. 相似文献
6.
7.
Scanning Kelvin Probe (SKP) and FTIR microscopy were applied to study the atmospheric corrosion of galvanized steel coated by electrophoretic epoxy resin (ED) at a defect. 相似文献
8.
9.
10.
采用硝酸亚铈、六偏磷酸钠组成的转化液,在镀锌钢表面制备了铈盐转化膜,研究了硫化钠(Na2S)对其耐蚀改性作用。通过中性盐雾(NSS)试验考察了Na2S质量浓度、pH、温度、时间等工艺条件对转化膜耐蚀性的影响,通过单因素试验得到最佳转化条件为:Na2S 6 g/L,温度25°C,pH 0.8,转化时间3 min。用扫描电镜和能谱分析了有无Na2S改性的铈盐转化膜的形貌结构及成分,用Tafel极化曲线法比较了它们的耐蚀性。结果表明,加入Na2S增强了铈盐转化膜与镀锌钢基体的附着力,提高了O、P、Ce等主要耐蚀成分的含量,耐盐雾腐蚀时间由改性前的24 h延长到改性后的96 h,耐蚀性显著提高。 相似文献
11.
Yasuyuki Kobayashi 《Electrochimica acta》2006,51(20):4236-4242
The cerium-based conversion coatings on galvanized steel were investigated and the influence of SO42− on the corrosion behavior was evaluated. The coatings were prepared by a simple immersion of galvanized steels in an aqueous solution composed of cerium nitrate and sodium sulfate. The corrosion behavior was studied by means of potentiodynamic polarization measurements and neutral salt spray tests. The addition of SO42− to the coating solution considerably improved the corrosion resistance of the conversion coatings. Atomic force microscope observation shows that deposits prepared from the solution with SO42− have smaller crystalline size than those prepared without SO42−. The results of X-ray photoelectron spectroscopy and titration curves demonstrate that SO42− ions are incorporated in the coating during the conversion process. This indicates that SO42− acts as a grain refiner and/or growth inhibitor, thus enhancing the corrosion resistance. 相似文献
12.
13.
14.
热浸镀锌层表面偏钒酸盐转化膜 总被引:1,自引:0,他引:1
在热浸镀锌试样表面获得了一层均匀、完整的偏钒酸盐转化膜.成膜溶液成分及工艺条件为:NaVO3 5 g/L,pH 1.3,温度30 ℃,时间30 min.对比研究了偏钒酸盐转化膜和铬酸盐转化膜的耐蚀性能.结果表明,偏钒酸盐转化膜由Zn、O、V等元素组成,热浸镀锌层经偏钒酸盐转化处理后电化学阻抗和极化电阻增大,腐蚀电流密度... 相似文献
15.
16.
17.
通过电导率监视仪对硅烷的水解过程进行监控,确定了KH560的水解时间为3h,含不同质量分数鳞片锌粉的硅烷/锌复合液的水解时间为12h。将硅烷/锌水解液涂覆到低碳钢表面,制备了复合硅烷/锌涂层。通过盐雾试验、极化曲线和交流阻抗谱研究了不同锌粉含量的硅烷/锌复合涂层的耐蚀性能,通过扫描电镜观察了涂层的截面形貌,探讨了硅烷/锌复合涂层的耐蚀机理。结果表明,复合硅烷/锌涂层的耐蚀性能随着锌粉含量的增加而提高,鳞片锌粉的最大添加量为45%。此含量下的复合硅烷/锌涂层的耐蚀性能最好,中性盐雾时间达576h,是纯硅烷涂层的12倍。在此硅烷/锌复合涂层中,鳞片锌粉以平行叠加的方式组成致密的网状结构,从而延长了腐蚀性介质到达金属基材的时间,使涂层的耐蚀性能得到明显提高。 相似文献
18.
19.
A rectangular crevice assembly was used to investigate the effects of cathodic protection (CP) potential, bubbling CO2 and surface condition on the crevice corrosion of X70 steel under a disbonded coating. The solution within the crevice becomes more alkaline due to the reduction of dissolved O2. As a result, the potential of the steel reaches the protected potential range and thus the protection distance becomes longer when the applied CP potential is more negative. Potential drop (IR) mainly occurs in the vicinity of the opening. However, the introduction of CO2 into the solution prevents the formation of an alkaline environment but gives rise to an environment with a nearly neutral pH and a uniform potential distribution in the crevice. In addition, it is found that the pre-corrosion product layer significantly decreases the polarization rate in the crevice. 相似文献
20.
This paper analyses the effect of the presence of rust at the metal/paint interface on the behaviour of different paint systems used for protecting the structural steel exposed to the atmosphere. The paint systems were applied as films of variable thickness over rusted steel surfaces cleaned to different grades of surface preparation (Sa3, Sa2(1/2), Sa2 and St2). Pre-rusting of steel was carried out in a clean (uncontaminated) rural atmosphere. Atmospheric exposure tests were conducted for 14 years at three Spanish test sites of different atmospheric corrosivity. Exposed specimens were evaluated for rusting and blistering, as well as for delamination of the paint system on both sides of a scribe made in the paint film. The results reveal that in some cases the presence of rust has a negligible influence on the durability of the paint system applied. Those systems including a zinc-rich (ethyl silicate) primer were found to provide the most effective protection against corrosion under all types of conditions tested. 相似文献