首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
Corrosion behavior of Fe-3 at.% Si alloy in 0.01 mol dm−3 HCl solution was investigated by using scanning electrochemical microscopy (SECM) as well as general electrochemistry. The rate of corrosion coupled with hydrogen evolution was initially 0.44 A m−2 but decreased significantly with time. Localized hydrogen evolution on the specimen surface was probed by an SECM system in which a force sensor was mounted to determine the probe height from the specimen surface. SECM images revealed that hydrogen evolution took place heterogeneously on the specimen surface depending on crystallographic orientation of substrate single grains in the initial stage and then became relatively homogeneous. Finally, a heterogeneous hydrogen distribution corresponding to the appearance of localized corrosion sites was observed.  相似文献   

2.
The isothermal oxidation behavior of in situ (TiB2 + TiC)/Ti3SiC2 composite ceramics with different TiB2 content has been investigated at 900-1200 °C in air for exposure times up to 20 h by means of X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive spectroscopy. The oxidation of (TiB2 + TiC)/Ti3SiC2 composites follows a parabolic rate law. With the increase in TiB2 content, the oxidation weight gain, thickness of the oxidation scale, and parabolic rate constant decrease dramatically, which suggests that the incorporation of TiB2 greatly improves the oxidation resistance of the composites. With the increase in oxidation temperature, the enhancement effect becomes more pronounced. Due to the incorporation of TiB2, the oxidation scale of (TiB2 + TiC)/Ti3SiC2 composites is generally composed of an outer layer of coarse-grained TiO2 and an inner layer of amorphous boron silicate and fine-grained TiO2. Only the dense inner layer formed on the surface acts as a diffusion barrier, retarding the inward diffusion of O, and consequently contributing to the improved oxidation resistance of the (TiB2 + TiC)/Ti3SiC2 composites.  相似文献   

3.
Based on thermodynamic analysis, highly dense (TiB2 + TiC)/Ti3SiC2 composite ceramics with different TiB2 volume contents were in situ fabricated in situ by hot-pressing at 1500 °C. Laminar Ti3SiC2 grains, columnar TiB2 grains and equiaxed TiC grains were clearly identified from microstructural observation; grain boundaries were clean. The increase of TiB2 volume content significantly restrains the grain growth of the Ti3SiC2 matrix. As the content of TiB2 increases from 5 vol.% to 20 vol.%, the bending strength and fracture toughness of the composites both increase and then decrease, whereas the Vickers hardness increases linearly from 6.13 GPa to 11.5 GPa. The composite with 10 vol.% TiB2 shows the optimized microstructure and optimal mechanical properties: 700 MPa for bending strength; 9.55 MPa m1/2 for fracture toughness. These are attributed to the synergistic action of strengthening and toughening mechanisms such as particulate reinforcement, crack deflection, grain's pull-out and fine-grain toughening, caused by the columnar TiB2 grains and equiaxed TiC grains.  相似文献   

4.
In this paper, Me double hydroxides (Me = Co and Ni)/TiO2 nanotube composites were synthesized by a simple chemical co-precipitation method. Electrochemical properties of the composites were examined by cyclic voltammetry, galvanostatic and impedance measurements. The highest specific capacitance values of 1053 F/g could be achieved with Me double hydroxides loaded on the TiO2 nanotube, which was comparable to that of hydrated ruthenium oxide.  相似文献   

5.
Isomerization of n-hexane and n-pentane were studied using equivalent 5 monolayers of MoO3 deposited on TiO2. Addition of 2.5% Pt by weight of MoO3 on the Mo catalyst resulted in an increase in the catalytic activity of the system in favor of hydrocracking products. Surface characterization by XPS-UPS and ISS reveal that the sample surface contains Oxygen, Molybdenum, Platinum and Titanium. Apparently, the metallic properties of the deposited Pt favors the hydrocracking reactions and becomes dominant at reaction temperatures higher than 623 K. Balanced metal-acid functions in MoO2 − x(OH)y phase seems to be in optimized condition toward the hydroisomerization process. The contribution of Platinum addition to this catalytic reaction is not obvious. Combination of surface XPS-UPS, ISS and catalytic reactions carried out at similar experimental conditions enabled us to have better insight concerning the catalytic activities of the different chemical species present on the sample surface.  相似文献   

6.
Spherical lithium manganese oxide spinel was synthesized by an ultrasonic spray pyrolysis method, and has been characterized using X-ray diffraction, scanning electron microscopy, transimission electron microscopy and electrochemical cycling at 3 V regions. The LiMn2O4 powders were composed of about 10 nm-sized primary particles. The delivered discharge capacity of the synthesized nano-material was 125 mAh g−1 between 2.4 and 3.5 V and its retention was about 96% upon 50 cycling. From the high resolution transmission electron microscopic study, it was found that structural transition of the parent material did not occur even after the 50th electrochemical cycling on the 3 V region. It seems that the reversible structural change is possible for nanocrystalline LiMn2O4 as observed by the X-ray diffraction and transition electron microscopic observations.  相似文献   

7.
LiNiO2, LiNi0.995Al0.005O2, LiNi0.975Ga0.025O2, LiNi0.990Ti0.010O2 and LiNi0.990Al0.005Ti0.005O2 specimens were synthesized by preheating at 400 °C for 30 min in air and calcination at 750 °C for 36 h in an O2 stream. The variation of the discharge capacities with C-rate for the synthesized samples was investigated. LiNi0.990Al0.005Ti0.005O2 has the largest first discharge capacities at the 0.1 and 0.2 C rates. LiNi0.990Ti0.010O2 has the largest first discharge capacity at the 0.5 C rate. In case of LiNiO2 and LiNi0.990Ti0.010O2, the first discharge capacity decreases slowly as the C-rate increases. LiNiO2 has the largest discharge capacities at n = 10 (after stabilization of the cycling performance) at the 0.1, 0.2 and 0.5 C rates. This is considered to be related with the largest value of I0 0 3/I1 0 4 and the smallest value of R-factor (the least degree of cation mixing) among all the samples. LiNi0.975Ga0.025O2 exhibits the lowest discharge capacity degradation rates at 0.1, 0.2 and 0.5 C rates.  相似文献   

8.
9.
This study reports on the synthesis of ternary semiconductor (BixSb1−x)2Te3 thin films on Au(1 1 1) using a practical electrochemical method, based on the simultaneous underpotential deposition (UPD) of Bi, Sb and Te from the same solution containing Bi3+, SbO+, and HTeO2+ at a constant potential. The thin films are characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and reflection absorption-FTIR (RA-FTIR) to determine structural, morphological, compositional and optic properties. The ternary thin films of (BixSb1−x)2Te3 with various compositions (0.0 ≤ x ≤ 1.0) are highly crystalline and have a kinetically preferred orientation at (0 1 5) for hexagonal crystal structure. AFM images show uniform morphology with hexagonal-shaped crystals deposited over the entire gold substrate. The structure and composition analyses reveal that the thin films are pure phase with corresponding atomic ratios. The optical studies show that the band gap of (BixSb1−x)2Te3 thin films could be tuned from 0.17 eV to 0.29 eV as a function of composition.  相似文献   

10.
WC-40 vol.%Al2O3 composites were prepared by high energy ball milling followed by hot pressing. The tungsten carbide (WC) and commercial alumina (Al2O3) powders composed of amorphous Al2O3, boehmite (AlOOH) and χ-Al2O3 were used as the starting materials. The phase transformation during sintering, the influence of sintering temperature and holding time on the densification, microstructure, Vickers hardness and fracture toughness and the toughening effects of WC-40 vol.%Al2O3 composites were investigated. The results showed that the amorphous Al2O3, AlOOH and χ-Al2O3 were transformed to α-Al2O3 completely during the sintering process. With the increasing sintering temperature and holding time, the relative density increased and both the Vickers hardness and fracture toughness increased initially to the maximum values and then decreased. When the as milled powders were hot pressed at 1540 °C for 90 min, a relative density of 97.98% and a maximum hardness of 18.65 GPa with an excellent fracture toughness of 10.43 MPa m1/2 of WC-40 vol.%Al2O3 composites were obtained.  相似文献   

11.
Carbon materials particularly in the form of sparkling diamonds have held mankind spellbound for centuries, and in its other forms, like coal and coke continue to serve mankind as a fuel material, like carbon black, carbon fibers, carbon nanofibers and carbon nanotubes meet requirements of reinforcing filler in several applications. All these various forms of carbon are possible because of the element's unique hybridization ability. Graphene (a single two-dimensional layer of carbon atoms bonded together in the hexagonal graphite lattice), the basic building block of graphite, is at the epicenter of present-day materials research because of its high values of Young's modulus, fracture strength, thermal conductivity, specific surface area and fascinating transport phenomena leading to its use in multifarious applications like energy storage materials, liquid crystal devices, mechanical resonators and polymer composites. In this review, we focus on graphite and describe its various modifications for use as modified fillers in polymer matrices for creating polymer-carbon nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号