首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Living organisms generate electrical fields. The conduction of electrochemical excitation is a fundamental property of living organisms. Cells, tissues, and organs transmit electrochemical signals over short and long distances. Excitation waves in higher plants are possible mechanisms for intercellular and intracellular communication in the presence of environmental changes. Ionic channels, as natural nanodevices, control the plasma membrane potential and the movement of ions across membranes; thereby, regulating various biological functions. Some voltage-gated ion channels work as plasma membrane nanopotentiostats. Tetraethylammonium chloride and ZnCl2 block K+ and Ca2+ ionic channels. These blockers inhibit the propagation of action potentials induced by blue light, and inhibit phototropism in soybean plants. The irradiation of soybean plants at 450 ± 50 nm induces action potentials with duration times of about 0.3 ms and amplitudes around 60 mV. The role of the electrified nanointerface of the plasma membrane in signal transduction is discussed.  相似文献   

2.
Erv1 (EC number 1.8.3.2) is an essential mitochondrial enzyme catalyzing protein import and oxidative folding in the mitochondrial intermembrane space. Erv1 has both oxidase and cytochrome c reductase activities. While both Erv1 and cytochrome c were reported to be membrane associated in mitochondria, it is unknown how the mitochondrial membrane environment may affect the function of Erv1. Here, in this study, we used liposomes to mimic the mitochondrial membrane and investigated the effect of liposomes and cardiolipin on the folding and function of yeast Erv1. Enzyme kinetics of both the oxidase and cytochrome c reductase activity of Erv1 were studied using oxygen consumption analysis and spectroscopic methods. Our results showed that the presence of liposomes has mild impacts on Erv1 oxidase activity, but significantly inhibited the catalytic efficiency of Erv1 cytochrome c reductase activity in a cardiolipin-dependent manner. Taken together, the results of this study provide important insights into the function of Erv1 in the mitochondria, suggesting that molecular oxygen is a better substrate than cytochrome c for Erv1 in the yeast mitochondria.  相似文献   

3.
Examination of organelle- and membrane-specific processes such as signal transduction necessitates the use of plasma membrane vesicles with cytoplasmic side-in orientation. we are interested in the structural identity and subcellular localization of in vivo [32P]phosphoric acid ([32Pi])-labeled phosphoinositides, including the recently discovered phosphatidyl-scyllo-inositol, for signal transduction studies. In the first part of this investigation, plasma membrane vesicles from barley aleurone cells were isolated employing the aqueous polymer (Dextran and polyethylene glycol) two-phase partition method. The membrane vesicles that partitioned into the upper and lower phases of the aqueous polymer two-phase system were characterized and the purity of the vesicles ascertained by assaying for two marker enzymes, K+-stimulated, Mg2+-dependent adenosine triphosphatase (EC 3.6.1.3, ATPase), localized in the plasma membranes, and cytochrome c oxidase, localized in the mitochondria. Inhibitors for ATPases such as azide, molybdate, and vanadate were used to distinguish between plasma membrane-associated and intracellular membrane-as-sociated ATPases. These inhibitor studies suggest that the plasma membrane preparation contained about 7% of intracellular membrane vesicles and the intracellular membrane fraction contained about 6% of plasma membrane vesicles. Orientation of the plasma membrane vesicles was ascertained by measuring the latent ATPase activity. These latency studies suggest that about 95% of the plasma membrane vesicles were of cytoplasmic side-in orientation. In the second part of this investigation, intracellular distribution and in vivo [32Pi] labeling of phosphoinositides in the plasma membranes and intracellular membranes were investigated. Preferential accumulation of [32Pi]-labeled phosphatidyl-myo-inositol monophosphate (myo-PIP) and phosphatidyl-myo-inositol bisphosphate (myo-PIP2) was observed in the plasma membrane. However, scyllo-phosphatidylinositol (scyllo-PI) was detected in both the plasma membrane and the intracellular membranes. The cellular concentration of myo-phosphoinositides was determined, and, after 24 h of labeling with [32Pi], the ratio of radiolabel in myo-PI, PIP, and PIP2 paralleled the relative concentrations in aleurone cells.  相似文献   

4.
Cytochrome c oxidase is ubiquitous enzyme involved in the terminal step of respiratory electron transfer process. The unique binuclear copper center containing bis-dithiolato bridges form a valance delocalized [Cu1.5+-Cu1.5+] state of the metal center located at the subunit II of cytochrome c oxidase. This metal center acts as the electron entry site of the enzyme and accepts electrons from cytochrome c. Direct electrochemistry of this binuclear copper center containing the water soluble protein obtained by genetically truncating the membrane bound part of the subunit II from Thermus thermophilus was achieved by favorable orientation of the protein on glassy carbon electrode surface promoting efficient electron transfer in the presence of various surfactants. Very reproducible, Nernstian responses are obtained with CuA. The redox potential and the electrochemical response were enhanced prominently in case of cationic surfactant CTAB indicating that the nature of the surfactant has a significant effect on the microenvironment of the protein-electrode interface. The results have been used to understand the mechanism of electron transfer from cytochrome c to the copper center during the enzymatic reaction.  相似文献   

5.
Development of a membraneless ethanol/oxygen biofuel cell   总被引:1,自引:0,他引:1  
Biofuel cells are similar to traditional fuel cells, except the metallic electrocatalyst is replaced with a biological electrocatalyst. This paper details the development of an enzymatic biofuel cell, which employs alcohol dehydrogenase to oxidize ethanol at the anode and bilirubin oxidase to reduce oxygen at the cathode. This ethanol/oxygen biofuel cell has an active lifetime of about 30 days and shows power densities of up to 0.46 mW/cm2. The biocathode described in this paper is unique in that bilirubin oxidase is immobilized within a modified Nafion polymer that acts both to entrap and stabilize the enzyme, while also containing the redox mediator in concentrations large enough for self-exchange based conduction of electrons between the enzyme and the electrode. This biocathode is fuel tolerant, which leads to a unique fuel cell that employs both renewable catalysts and fuel, but does not require a separator membrane to separate anolyte from catholyte.  相似文献   

6.
Microdomains formed by proteins of endoplasmic reticulum and plasma membrane play a key role in store-operated Ca2+ entry (SOCE). Ca2+ release through inositol 1,4,5-trisphosphate receptor (IP3R) and subsequent Ca2+ store depletion activate STIM (stromal interaction molecules) proteins, sensors of intraluminal Ca2+, which, in turn, open the Orai channels in plasma membrane. Downstream to this process could be activated TRPC (transient receptor potential-canonical) calcium permeable channels. Using single channel patch-clamp technique we found that a local Ca2+ entry through TRPC1 channels activated endogenous Ca2+-activated chloride channels (CaCCs) with properties similar to Anoctamin6 (TMEM16F). Our data suggest that their outward rectification is based on the dependence from membrane potential of both the channel conductance and the channel activity: (1) The conductance of active CaCCs highly depends on the transmembrane potential (from 3 pS at negative potentials till 60 pS at positive potentials); (2) their activity (NPo) is enhanced with increasing Ca2+ concentration and/or transmembrane potential, conversely lowering of intracellular Ca2+ concentration reduced the open state dwell time; (3) CaCC amplitude is only slightly increased by intracellular Ca2+ concentration. Experiments with Ca2+ buffering by EGTA or BAPTA suggest close local arrangement of functional CaCCs and TRPC1 channels. It is supposed that Ca2+-activated chloride channels are involved in Ca2+ entry microdomains.  相似文献   

7.
Electrochemical water splitting used for generating hydrogen has attracted increasingly attention due to energy and environmental issues. It is a major challenge to design an efficient, robust and inexpensive electrocatalyst to achieve preferable catalytic performance. Herein, a novel three-dimensional (3D) electrocatalyst was prepared by decorating nanostructured biological material-derived carbon nanofibers with in situ generated cobalt-based nanospheres (denoted as CNF@Co) through a facile approach. The interconnected porous 3D networks of the resulting CNF@Co catalyst provide abundant channels and interfaces, which remarkably favor both mass transfer and oxygen evolution. The as-prepared CNF@Co shows excellent electrocatalytic activity towards the oxygen evolution reactions with an onset potential of about 0.445 V vs. Ag/AgCl. It only needs a low overpotential of 314 mV to achieve a current density of 10 mA/cm2 in 1.0 M KOH. Furthermore, the CNF@Co catalyst exhibits excellent stability towards water oxidation, even outperforming commercial IrO2 and RuO2 catalysts.  相似文献   

8.
R. Naumann 《Electrochimica acta》1989,34(12):1807-1814
The phosphorylating membrane is treated as an electrochemical energy converter with protons instead of electrons as charge-separating entities. Scalar chemical reactions are taken to be coupled to proton transfer across the membrane—solution interface. A Butler—Volmer type of equation set-up in terms of the electrochemical potential difference of the proton is taken to govern interfacial as well as transmembrane proton flux. This is formally similar to the Butler—Volmer equation used by Gurevich and Kharkats (Yu. Y. Gurevich and Yu. I. Kharkats, J. electroanal. Chem. 200, 3, 1986) for ion transfer across a phase boundary, taking into account surface concentrations of ions not at equilibrium with the bulk.

On the basis of the theory of metastable states and hysteresis of polyelectrolytes brought forward by Katchalsky and Spangler (A. Katchalsky and R. Spangler, Q. Rev. Biophys. 1, 127, 1986) the operating at the membrane/solution interface is also shown to act as modulator of self-induced oscillations of proton flux coupled to cooperative phase transitions. This provides an explanation of conformational fluctuations of membrane proteins observed at biological membranes in connection with energy conversion.  相似文献   


9.
《Electrochimica acta》2001,46(1-2):283-292
Electrochemical techniques offer considerable potential for applications in the biological sciences, particularly with regard to sampling chemical gradients in the diffusive boundary layer surrounding cells and tissues. However, their implementation is constrained by problems of discriminating relevant signals from non-specific reactions and bulk concentrations. This paper introduces an approach, referred to as self-referencing, which circumvents some of these problems opening up the application of potentiometric and amperometric sensors to probing the activity of living cells in near to real-time. New applications are described. The design and implementation of an enzyme based self-referencing microsensor capable of measuring a glucose flux of 79 pmol cm−2 s−1 and a cellular consumption of 58±7 fmol nl−1 s−1(mean ± SEM, n=5), where nl represents the biologically active volume, is described. Additionally, we introduce two novel designs, termed electro-optical, where electrochemical sensors are fused with fiber optics, such that intracellular calcium levels can be monitored while collecting collateral data with high spatial and temporal resolution. The amperometric devices are built on the fiber optic surface and are designed to measure cellular oxygen consumption. Potentiometric designs require a single mode fiber to be inserted through the liquid membrane and body of an ion selective electrode. Biological data are presented for the latter design.  相似文献   

10.
Sperm motility is linked to the activation of signaling pathways that trigger movement. These pathways are mainly dependent on Ca2+, which acts as a secondary messenger. The maintenance of adequate Ca2+ concentrations is possible thanks to proper concentrations of other ions, such as K+ and Na+, among others, that modulate plasma membrane potential and the intracellular pH. Like in every cell, ion homeostasis in spermatozoa is ensured by a vast spectrum of ion channels supported by the work of ion pumps and transporters. To achieve success in fertilization, sperm ion channels have to be sensitive to various external and internal factors. This sensitivity is provided by specific channel structures. In addition, novel sperm-specific channels or isoforms have been found with compositions that increase the chance of fertilization. Notably, the most significant sperm ion channel is the cation channel of sperm (CatSper), which is a sperm-specific Ca2+ channel required for the hyperactivation of sperm motility. The role of other ion channels in the spermatozoa, such as voltage-gated Ca2+ channels (VGCCs), Ca2+-activated Cl-channels (CaCCs), SLO K+ channels or voltage-gated H+ channels (VGHCs), is to ensure the activation and modulation of CatSper. As the activation of sperm motility differs among metazoa, different ion channels may participate; however, knowledge regarding these channels is still scarce. In the present review, the roles and structures of the most important known ion channels are described in regard to regulation of sperm motility in animals.  相似文献   

11.
Groups of young rats were fed a basal diet with beef tallow (BT) or corn oil (CO) added to provide 4 or 19% energy as linoleic acid. Mitochondria isolated from the livers of the rats fed the CO contained a significantly lower concentration of b-type cytochrome and significantly higher concentrations of cytochromes c, c1 and aa3. Cytochrome c oxidase activity also was elevated. The spectral characteristics of the b-type cytochrome varied between the 2 groups. The mitochondria from the rats fed CO contained relatively more of the cytochrome b-558 component whereas mitochondria from the BT group contained more of the cytochrome b-562 component. The classical antimycin A inhibition of electron transport between cytochromes b and c1 was partially bypassed in mitochondria with the more fluid membrane. The activation energy for cytochrome c oxidase in mitochondria from this group was significantly higher. These differences may be traced to the physical characteristics of the inner mitochondrial membrane.  相似文献   

12.
Little data exist about the physiological role of ion channels during the freeze–thaw process in mammalian sperm. Herein, we determined the relevance of potassium channels, including SLO1, and of voltage-gated proton channels (HVCN1) during mammalian sperm cryopreservation, using the pig as a model and through the addition of specific blockers (TEA: tetraethyl ammonium chloride, PAX: paxilline or 2-GBI: 2-guanidino benzimidazole) to the cryoprotective media at either 15 °C or 5 °C. Sperm quality of the control and blocked samples was performed at 30- and 240-min post-thaw, by assessing sperm motility and kinematics, plasma and acrosome membrane integrity, membrane lipid disorder, intracellular calcium levels, mitochondrial membrane potential, and intracellular O2⁻ and H2O2 levels. General blockade of K+ channels by TEA and specific blockade of SLO1 channels by PAX did not result in alterations in sperm quality after thawing as compared to control samples. In contrast, HVCN1-blocking with 2-GBI led to a significant decrease in post-thaw sperm quality as compared to the control, despite intracellular O2⁻ and H2O2 levels in 2-GBI blocked samples being lower than in the control and in TEA- and PAX-blocked samples. We can thus conclude that HVCN1 channels are related to mammalian sperm cryotolerance and have an essential role during cryopreservation. In contrast, potassium channels do not seem to play such an instrumental role.  相似文献   

13.
Cholesterol oxidase (cholesterol:oxygen oxidoreductase, EC 1.1.3.6) catalyzes the conversion of sterol Δ5-3β-alcohol to the corresponding Δ4-3-ketone with the reduction of oxygen to hydrogen peroxide.Rhodococcus species GK 1, a soil isolated microbe, produces an extracellular and a membrane-bound cholesterol oxidase; the latter is bound to the outer surface of the microbial cell membrane. A simple and sensitive assay is described to measure the two enzyme types; no enzyme extraction is needed for measuring the membrane-bound cholesterol oxidase. In this assay, hydrogen peroxide is reduced by the chromogen 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) in the presence of horseradish peroxidase, and the increased absorbance is followed continuously at 600 nm (εm = 1.82×104 M−1·cm−1 at pH 7.0 and 30°C). The standardized assay medium contained 46.9 mM sodium-potassium phosphate buffer pH 7.0, 0.16% Triton X-100, 312.5 μM ABTS, 50 μg peroxidase (12.5 units at 25°C), 6.25% isopropanol, 306.3 μM cholesterol or other sterols (kept in solution with isopropanol), and cholesterol oxidase. Oxidation of one molecule of cholesterol by cholesterol oxidase gives one molecule of hydrogen peroxide which reacts with two molecules of ABTS. The method is reproducible and the results correlate well with those obtained by measuring the absorbance of Δ4-cholest-3-one at 240 nm (εm = 1.40×104 M−1·cm−1 at pH 7.0 and 30°C) and by the method of Allainet al. (Clin. Chem. 20, 470–475, 1974). In terms of efficiency, simplicity, and time saved, this coupled assay is expected to be a useful method for monitoring microbial production of cholesterol oxidase on an industrial scale, and for determining cholesterol or other sterols in biological fluids.  相似文献   

14.
His-tag technology was applied for biosensing purposes involving multi-redox center proteins (MRPs). An overview is presented on various surfaces ranging from flat to spherical and modified with linker molecules with nitrile-tri-acetic acid (NTA) terminal groups to bind his-tagged proteins in a strict orientation. The bound proteins are submitted to in situ dialysis in the presence of lipid micelles to form a so-called protein-tethered bilayer lipid membrane (ptBLM). MRPs, such as the cytochrome c oxidase (CcO) from R. sphaeroides and P. denitrificans, as well as photosynthetic reactions centers (RCs) from R. sphaeroides, were thus investigated. Electrochemical and surface-sensitive optical techniques, such as surface plasmon resonance, surface plasmon-enhanced fluorescence, surface-enhanced infrared absorption spectroscopy (SEIRAS) and surface-enhanced resonance Raman spectroscopy (SERRS), were employed in the case of the ptBLM structure on flat surfaces. Spherical particles ranging from µm size agarose gel beads to nm size nanoparticles modified in a similar fashion were called proteo-lipobeads (PLBs). The particles were investigated by laser-scanning confocal fluorescence microscopy (LSM) and UV/Vis spectroscopy. Electron and proton transfer through the proteins were demonstrated to take place, which was strongly affected by the membrane potential. MRPs can thus be used for biosensing purposes under quasi-physiological conditions.  相似文献   

15.
Pannexin-1 (PANX1) is a transmembrane protein that forms ion channels as hexamers on the plasma membrane. Electrophysiological studies prove that PANX1 has a high conductance for adenosine triphosphate (ATP), which plays an important role as a signal molecule in platelet activation. Recently, it was shown that PANX1 channels modulate platelet functions. To date, it remains unclear how PANX1 channels are activated and which signaling mechanisms are responsible for impaired hemostasis and thrombosis. Analysis of PANX1 phosphorylation at Tyr198 and Tyr308, and the impact on platelet activation and thrombus formation using genetically modified platelets or pharmacological inhibitors. Platelet activation via immunoreceptor tyrosine-based activation motif (ITAM) coupled, G Protein-Coupled Receptors (GPCR) and thromboxane receptor (TP)-mediated signaling pathways led to increased PANX1 phosphorylation at Tyr198 and Tyr308. We identified the Src-GPVI signaling axes as the main pathway inducing PANX1 activation, while PKC and Akt play a minor role. PANX1 channels function as ATP release channels in platelets to support arterial thrombus formation. PANX1 activation is regulated by phosphorylation at Tyr198 and Tyr308 following platelet activation. These results suggest an important role of PANX1 in hemostasis and thrombosis by releasing extracellular ATP to support thrombus formation.  相似文献   

16.
Electrochemical Impedance Spectroscopy (EIS) was applied on Cu-Ni samples passivated in a specially designed flat electrochemical cell which was heated at 60 °C. The electrolyte consisted of 160 g l−1H2SO4, 40 g l−1 Cu2+ and 0, 10, 20, 30 or 40 g l−1 Ni2+ and the copper anodes contained nickel ranging from 0 w% to 10 w%. The oxygen content of the anodes and the electrolyte was also measured. An AC excitation signal of 10 mV and of 1mHz 100 MHz frequency was applied at the open circuit potential as well as at a passivation potential, the latter having been determined previously. The results indicate that nickel ion additions to the electrolyte increased the resistance of the electrolyte and altered the porosity, thickness and constituents of the passivation layer formed. The equivalent circuit models generated from the data acquired during the EIS experiments and the values for the electrical components were in the predicted range. The results are supported by supplementary XRD and SEM findings.  相似文献   

17.
Ion channels, which are found in every biological cell, regulate the concentration of electrolytes, and are responsible for multiple biological functions, including in particular the propagation of nerve impulses. The channels with the latter function are gated (opened) by a voltage signal, which allows Na+ into the cell and K+ out. These channels have several positively charged amino acids on a transmembrane domain of their voltage sensor, and it is generally considered, based primarily on two lines of experimental evidence, that these charges move with respect to the membrane to open the channel. At least three forms of motion, with greatly differing extents and mechanisms of motion, have been proposed. There is a “gating current”, a capacitative current preceding the channel opening, that corresponds to several charges (for one class of channel typically 12–13) crossing the membrane field, which may not require protein physically crossing a large fraction of the membrane. The coupling to the opening of the channel would in these models depend on the motion. The conduction itself is usually assumed to require the “gate” of the channel to be pulled apart to allow ions to enter as a section of the protein partially crosses the membrane, and a selectivity filter at the opposite end of the channel determines the ion which is allowed to pass through. We will here primarily consider K+ channels, although Na+ channels are similar. We propose that the mechanism of gating differs from that which is generally accepted, in that the positively charged residues need not move (there may be some motion, but not as gating current). Instead, protons may constitute the gating current, causing the gate to open; opening consists of only increasing the diameter at the gate from approximately 6 Å to approximately 12 Å. We propose in addition that the gate oscillates rather than simply opens, and the ion experiences a barrier to its motion across the channel that is tuned by the water present within the channel. Our own quantum calculations as well as numerous experiments of others are interpreted in terms of this hypothesis. It is also shown that the evidence that supports the motion of the sensor as the gating current can also be consistent with the hypothesis we present.  相似文献   

18.
Mitochondria are vital to life and provide biological energy for other organelles and cell physiological processes. On the mitochondrial double layer membrane, there are a variety of channels and transporters to transport different metal ions, such as Ca2+, K+, Na+, Mg2+, Zn2+ and Fe2+/Fe3+. Emerging evidence in recent years has shown that the metal ion transport is essential for mitochondrial function and cellular metabolism, including oxidative phosphorylation (OXPHOS), ATP production, mitochondrial integrity, mitochondrial volume, enzyme activity, signal transduction, proliferation and apoptosis. The homeostasis of mitochondrial metal ions plays an important role in maintaining mitochondria and cell functions and regulating multiple diseases. In particular, channels and transporters for transporting mitochondrial metal ions are very critical, which can be used as potential targets to treat neurodegeneration, cardiovascular diseases, cancer, diabetes and other metabolic diseases. This review summarizes the current research on several types of mitochondrial metal ion channels/transporters and their functions in cell metabolism and diseases, providing strong evidence and therapeutic strategies for further insights into related diseases.  相似文献   

19.
Our principal goal is the complete resolution and reconstitution of the microsomal enzymes of cholesterol biosynthesis. Elucidation of the enzymology has been achieved primarily through dissection of the membrane-bound, 19-step multienzymic process. This report describes the dissection approach through both interruption of specific steps and reconstitution of enzymes that catalyze oxidation of the 14α-methyl group. In earlier work, 4-demethylation was resolved into 3 component reactions catalyzed by: 4-methyl sterol oxidase (NAD[P] H- and O2-dependnet); steroid 4α-carboxylic acid decarboxylase (NAD-dependent); and 3-ketosteroid reductase (NADPH-dependent). The 3-ketosteroid reductase and decarboxylase have been solubilized with Lubrol WX and deoxycholate, respectively, and characterized. The 4-methyl sterol oxidase (cytochrome b5-dependent) recently has been solubilized with Renex 690. This study represents successful elucidation of a microsomal enzyme sequence by interruption of the central 10-step segment of the multienzymic formation of cholesterol from lanosterol. The initial C-32 oxidative reaction of 14α-methyl group elimination is catalyzed by a from of cytochrome P-450 that is induced by isosafrole. The induced cytochrome P-450 has been solubilized with Emulgen 913 and purified to homogeneity (17 nmol of cytochrome/mg protein). 24,25-Dihydrolanosterol is oxidized by combination of cytochrome P-450 reductase, hematin, NADPH, glutathione, and the purified, isosafrole-induced cytochrome in an artificial liposome. Oxidation product identification is underway. This study represents successful elucidation of a microsomal multienzymic sequence by solubilization and reconstitution of a segment of the pathway. The remaining enzymes under study are the Δ8→Δ7 isomerase and 3 NADPH-dependent double bond reductases that catalyze reduction of: Δ7, Δ14- Δ24-sterol double bonds. Purification of these nonoxygenrequiring enzymes is in progress. Resolution of the enzymes has demonstrated unequivocally that cholesterol synthesis via this pathway could not have appeared biologically until membranes containedboth the cytochrome P-450- and cytochrome b5-electron transport enzymes. Chemically, all enzymic attacks in the formation of cholesterol from lanosterol appear to be initiated on the α-face of the relatively planar steroids. Thus, considerable genetic pressure must have been needed for the stereospecific clearing of the steroidal α-face to form the mature membrane component, cholesterol.  相似文献   

20.
The combined effect of oxygen and nitrogen functional groups on highly crystalline carbon supports like multiwalled carbon nanotubes (MWCNT) and MWCNT‐few layer graphene hybrid structures (MWCNT+FLG) have been investigated towards oxygen reduction reaction (ORR) performance and carbon corrosion durability in polymer electrolyte membrane fuel cell (PEMFC) applications. The pristine carbon supports were modified with oxygen and nitrogen functionalities by treating with concentrated mineral acids and subsequent nitrogen plasma treatment assisted with R.F. magnetron sputtering. Pt nanoparticles were dispersed over these chemically modified carbon supports by polyol reduction method. The physicochemical properties of as synthesized electrocatalysts were studied by different techniques such as XRD, TEM, FTIR, Raman and XPS. Electrochemical properties were investigated by cyclic voltammetry and linear sweep voltammetry in 0.1M HClO4 medium. Compared to commercial Pt/C catalysts, durability show ∼30 % enhancement for the as prepared electrocatalysts due to the presence of large amount of pyrrolic nitrogen and highly oriented graphitic nature of the catalyst supports. The ORR performance were comparable with Pt/C (TEC10E30E) in terms of MSA, 259, 270, 252 A g−1 for Pt/C, Pt/N‐f‐MWCNT, Pt/N‐f‐(MWCNT+FLG) respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号