首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The LiMn2O4 electrode materials were synthesized by the conventional-hydrothermal and microwave-hydrothermal methods. The electrochemical performances of LiMn2O4 were studied as supercapacitors in LiNO3 electrolyte and lithium-ion battery cathodes. The microwave-hydrothermal method can synthesize LiMn2O4 electrode materials with reversible electrochemical reaction in a short reaction time and low reaction temperature than conventional-hydrothermal route. The capacitance of LiMn2O4 electrode increased with increasing crystallization time in conventional-hydrothermal route. The results showed that LiMn2O4 supercapacitors had similar discharge capacity and potential window (1.2 V) as that of ordinary lithium-ion battery cathodes. In LiNO3 aqueous electrolyte, the reaction kinetics of LiMn2O4 supercapacitors was very fast. Even, at current densities of 1 A/g and 5 A/g, aqueous electrolyte gave good capacity compared with that in organic electrolyte at a current density of 0.05 A/g.  相似文献   

2.
Pure-phase and well-crystallized spinel LiAl0.05Mn1.95O4 powders were successfully synthesized by a simple ultrasonic assisted rheological phase (UARP) method. The structure and morphology properties of this as-prepared powder compared with the pristine LiMn2O4 and LiAl0.05Mn1.95O4 obtained from the solid-state reaction (SSR) method were investigated by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties focused on the LiAl0.05Mn1.95O4 by this new method have also been investigated in detail. According to these tests results, it is obviously to see that the newly prepared sample delivers a relatively high initial discharge capacity of 111.6 mAh g−1, presents excellent rate capability and reversibility, and shows good cycling stability with capacity retention of 90.6% after 70 cycles. Meanwhile, the electrochemical impedance spectroscopy (EIS) investigations were employed to study the electrochemical process of Li+ ions with the synthesized LiAl0.05Mn1.95O4 electrode in detail.  相似文献   

3.
Single crystalline cubic spinel LiMn2O4 nanowires were synthesized by hydrothermal method and the precursor calcinations. The phase structures and morphologies were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). Galvanostatic charging/discharging cycles of as-prepared LiMn2O4 nanowires were performed in an aqueous LiNO3 solution. The initial discharge capacity of LiMn2O4 nanowires was 110 mAh g−1, and the discharge capacity was still above 100 mAh g−1 after 56 cycles at 10C-rate, and then 72 mAh g−1 was registered after 130 cycles. This is the first report of a successful use of single crystalline spinel LiMn2O4 nanowire as cathode material for the aqueous rechargeable lithium battery (ARLB).  相似文献   

4.
D. Arumugam 《Electrochimica acta》2010,55(28):8709-8716
LiMn2O4 spinel cathode materials were coated with 0.5, 1.0, and 1.5 wt.% CeO2 by a polymeric process, followed by calcination at 850 °C for 6 h in air. The surface-coated LiMn2O4 cathode materials were physically characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron microscopy (XPS). XRD patterns of CeO2-coated LiMn2O4 revealed that the coating did not affect the crystal structure or the Fd3m space group of the cathode materials compared to uncoated LiMn2O4. The surface morphology and particle agglomeration were investigated using SEM, TEM image showed a compact coating layer on the surface of the core materials that had average thickness of about 20 nm. The XPS data illustrated that the CeO2 completely coated the surface of the LiMn2O4 core cathode materials. The galvanostatic charge and discharge of the uncoated and CeO2-coated LiMn2O4 cathode materials were measured in the potential range of 3.0-4.5 V (0.5 C rate) at 30 °C and 60 °C. Among them, the 1.0 wt.% of CeO2-coated spinel LiMn2O4 cathode satisfies the structural stability, high reversible capacity and excellent electrochemical performances of rechargeable lithium batteries.  相似文献   

5.
Novel Electrostatic Spray Deposition (ESD) technique was used to fabricate LiMn2O4 spinel thin-films. Cyclic voltammograms of both the ESD and porous laminate films show the double peaks in the 4.0 V range characteristic of the LiMn2O4 spinel materials. The porous laminates exhibit two semicircles in the impedance spectra while the ESD films show only one single semicircle. The diffusion time constant in the laminate films was typically one order of magnitude larger than that in the ESD thin-films. The apparent lithium-ion chemical diffusion coefficient in LiMn2O4 was found to be of the order of 10−9 cm2/s for both the porous laminate film and the ESD films despite the difference in the diffusion time constants.  相似文献   

6.
In the current research, we proposed a new method called microwave-induced combustion synthesis to produce LiMn2O4 powders. The microwave-induced combustion synthesis entails the dissolution of metal nitrates, and urea in water, and then heating the resulting solution in a microwave oven. Spinel LiMn2O4 powders were successfully synthesized by microwave-induced combustion. The microwave-heated LiMn2O4 powders annealed at various temperatures in the range of 600–800 °C were determined. The resultant powders were characterized by X-ray diffractometer (XRD), and scanning electron microscopy (SEM). The annealed samples were used as cathode materials for lithium-ion battery, for which their discharge capacity and electrochemical characteristic properties in terms of cycle performance were also investigated. The LiMn2O4 cell provides a high initial capacity of 133 mAh/g and excellent reversibility. The excellent capacity and reversibility were attributed to LiMn2O4 powders with small and uniform particle size produced by microwave-induced combustion synthesis.  相似文献   

7.
Lithium manganese oxide (LiMn2O4) has been synthesized by a spray pyrolysis method from the precursor solution; LiNO3 and Mn(NO3)2·6H2O were stoichiometrically dissolved into distilled water. The synthesized LiMn2O4 particles exhibited a pure cubic spinel structure in the X-ray diffraction (XRD) patterns, however they were spherical hollow spheres for various concentrations of precursor solution. Thus, the as-prepared LiMn2O4 particles were then ground in a mortar and dispersed into distilled water. To make a well dispersed slurry solution, a dispersion agent was also added into the slurry solution. The LiMn2O4 microparticles with a spherical nanostructure were finally prepared by a spray drying method from the slurry solution. The tap density of the LiMn2O4 microparticle prepared by a combination of spray pyrolysis and drying method was larger than that by a conventional spray pyrolysis method.The as-prepared samples were sintered at 750 °C for 1 h in air and used as cathode active materials for lithium batteries. Test experiments in the electrochemical cell Li|1 M LiClO4 in EC:DEC = 1:1|LiMn2O4 demonstrate that the sample prepared by the present method is a promising cathode active material for 4 V lithium-ion batteries at high-charge-discharge and elevated temperature operation. The LiMn2O4 compounds by the combination of spray pyrolysis and drying method are superior to that by the conventional spray pyrolysis method in terms of electrochemical characteristics and tap density.  相似文献   

8.
Sub-micro spinel-structured LiMn1.5Ni0.5O4 material was prepared by a spray-drying method. The electrochemical properties of LiMn1.5Ni0.5O4 were investigated using Li ion model cells, Li/LiPF6 (EC + DMC)/LiMn1.5Ni0.5O4. It was found that the first reversible capacity was about 132 mAh g−1 in the voltage range of 3.60-4.95 V. Ex situ X-ray diffraction (XRD) analysis had been used to characterize the first charge/discharge process of the LiMn1.5Ni0.5O4 electrode. The result suggested that the material configuration maintained invariability. At room temperature, on cycling in high-voltage range (4.50-4.95 V) and low-voltage range (3.60-4.50 V), the discharge capacity of the material was about 100 and 25 mAh g−1, respectively, and the spinel LiMn1.5Ni0.5O4 exhibited good cycle ability in both voltage ranges. However, at high temperature, the material showed different electrochemical characteristics. Excellent electrochemical performance and low material cost make this spinel compound an attractive cathode for advanced lithium ion batteries.  相似文献   

9.
LiCoO2 and LiMn2O4 cathodes were studied by X-ray diffractometry (XRD) and electron diffraction after ageing in the charged state at elevated temperature. Some cathodes were stopped at different times during ageing and XRD measurements were taken to monitor changes in the crystal structure over ageing time. The results indicate that Li-ions intercalate into the cathodes lattice during ageing thus decreasing the available discharge capacity. Analysis of electron diffraction patterns of LiCoO2 and LiMn2O4 retrieved from the cathodes after ageing shows that irreversible crystallographic transformations have taken place in both electrodes. Dark field imaging illustrates that LiCoO2 forms a layer of spinel phase on its surface. In LiMn2O4 a tetragonal distorted spinel is observed when the cathode has been in the 3 V regime for considerable length of time.  相似文献   

10.
Usefulness of W substitution for improvement of battery performance of LiMn2O4 cathode was investigated. Small amounts of tungsten were incorporated into LiMn2O4 spinel instead of available Mn. For this purpose, two sources of tungsten (metallic W or WO3) were examined. W concentration and source have significant influence on both morphology and electrochemical behavior of W-substituted LiMn2O4 spinels. W substitution of LiMn2O4 spinel can lead to the formation of uniform spinel particles and improved battery performance. Cyclic voltammetric behaviors of the samples were examined in an aqueous solution, and Li diffusion process was investigated for different cases. The best case was the LiW0.01Mn1.99O4 spinel prepared from metallic W powder, as exhibits excellent rate capability, but better cycleability was observed for the LiW0.01Mn1.99O4 spinel prepared from WO3. This means that because of significant influence of the dopant source, this parameter should be chosen in respect with the desire improvement.  相似文献   

11.
Spherical spinel LiMn2O4 particles were successfully synthesized from a mixture of manganese compounds containing commercial manganese carbonate by sintering of the spray-dried precursor. Different preparation routes were investigated to improve the tap density and to enhance the electrochemical performance of LiMn2O4. The structure and morphology of the LiMn2O4 particles were confirmed by X-ray diffraction (XRD) and scanning electron microscopy. The results showed that hollow spherical LiMn2O4 particles could be obtained when only commercial MnCO3 was used as the manganese source. These particles had a low tap density (ca.0.8 g/cm3). Perfect micron-sized spherical LiMn2O4 particles with good electrochemical performance were obtained by spray-drying a slurry composed of MnCO3, Mn(CH3CHOO)2 and LiOH, followed by a dynamic sintering process and a stationary sintering process. The as-prepared spherical LiMn2O4 particles comprised hundreds of nanosize crystal grains and had a high tap density(ca. 1.4 g/cm3). The galvanostatic charge-discharge measurements indicated that the spherical LiMn2O4 particles had an initial capacity of 121 mAh/g between 3.0 and 4.2 V at 0.2 C rate and still delivered a reversible capacity of 112 mAh/g at 2 C rate. The retention of capacity after 50 cycles was still 96% of its initial capacity at 0.2 C. All the results showed that the as-prepared spherical LiMn2O4 particles had an excellent electrochemical performances. The methods we used for preparing spherical LiMn2O4 are energy-saving and suitable for industrial application.  相似文献   

12.
Spherical lithium manganese oxide spinel was synthesized by an ultrasonic spray pyrolysis method, and has been characterized using X-ray diffraction, scanning electron microscopy, transimission electron microscopy and electrochemical cycling at 3 V regions. The LiMn2O4 powders were composed of about 10 nm-sized primary particles. The delivered discharge capacity of the synthesized nano-material was 125 mAh g−1 between 2.4 and 3.5 V and its retention was about 96% upon 50 cycling. From the high resolution transmission electron microscopic study, it was found that structural transition of the parent material did not occur even after the 50th electrochemical cycling on the 3 V region. It seems that the reversible structural change is possible for nanocrystalline LiMn2O4 as observed by the X-ray diffraction and transition electron microscopic observations.  相似文献   

13.
Spherical LiMn2O4 particles were successfully synthesized by dynamically sintering spherical precursor powders, which were prepared by a slurry spray-drying method. The effect of the sintering process on the morphology of LiMn2O4 was studied. It was found that a one-step static sintering process combined with a spray-drying method could not be adopted to prepare spherical products. A two-step sintering procedure consisting of completely decomposing sprayed precursors at low temperature and further sintering at elevated temperature facilitated spherical particle formation. The dynamic sintering program enhanced the effect of the two-step sintering process in the formation of spherical LiMn2O4 powders. The LiMn2O4 powders prepared by the dynamic sintering process, after initially decomposing the spherical spray-dried precursor at 180 °C for 5 h and then sintering it at 700 °C for 8 h, were spherical and pure spinel. The as-prepared spherical material had a high tap density (ca. 1.6 g/cm3). Its specific capacity was about 117 mAh/g between 3.0 and 4.2 V at a rate of 0.2 C. The retention of capacity for this product was about 95% over 50 cycles. The rate capability test indicated that the retention of the discharge capacity at 4C rate was still 95.5% of its 0.2 rate capacity. All the results showed that the spherical LiMn2O4 product made by the dynamic sintering process had a good performance for lithium ion batteries. This novel method combining a dynamic sintering system and a spray-drying process is an effective synthesis method for the spherical cathode material in lithium ion batteries.  相似文献   

14.
The cycling performance of LiMn2O4 at room and elevated temperatures is improved by FePO4 modification through chemical deposition method. The pristine and FePO4-coated LiMn2O4 materials are characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. Their cycling performances are thoroughly investigated and compared. The 3 wt.% FePO4-coated LiMn2O4 exhibits capacity losses of only 32% and 34% at room temperature and 55 °C, respectively, after 80 cycles, much better than those of the pristine material, 55% and 72%. The cyclic voltammograms at 55 °C reveal that the improvement in the cycling performance of FePO4-coated LiMn2O4 electrodes can be attributed to the stabilization of spinel structures. The separation of FePO4 between active materials and electrolyte and its interaction with SEI (solid electrolyte interphase) film are believed to account for the improved performances.  相似文献   

15.
LiNi0.5Mn1.5O4, a lithium-ion battery cathode material, is prepared using co-precipitation via a two-step drying method with Ni-Mn mixed hydroxide as the precursor. This study examines the effects of precursor pretreatment with hydrazine (a reductant) or with H2O2 (an oxidant) in solutions of NiSO4 and MnSO4. The results indicate substantial differences in the structure and electrochemical properties of LiNi0.5Mn1.5O4 depending on whether the precursor is pretreated with reductant or oxidant. For the hydrazine-treated precursor, the synthesized LiNi0.5Mn1.5O4 has a very pure spinel phase and an ordered, octahedral crystal morphology (ca. 100-300 nm). In contrast, the material synthesized using the H2O2-treated precursor shows numerous impurity phases (Na0.7MnO2.05) with a layer-by-layer crystal structure. The control sample (prepared without precursor pretreatment) maintains an octahedral structure but still retains a few impurity phases of Na0.7MnO2.05. The electrochemical results show that LiNi0.5Mn1.5O4 synthesized using a hydrazine-treated precursor has a higher specific capacity (especially under high discharge current) and a higher cyclic life than the control sample, whereas the sample using H2O2-treated precursor shows almost no special capacity due to changes in crystal structure.  相似文献   

16.
The electrochemical performance of aqueous rechargeable lithium battery (ARLB) with LiV3O8 and LiMn2O4 in saturated LiNO3 electrolyte is studied. The results indicate that these two electrode materials are stable in the aqueous solution and no hydrogen or oxygen produced, moreover, intercalation/de-intercalation of lithium ions occurred within the range of electrochemical stability of water. The electrochemical performance tests show that the specific capacity of LiMn2O4 using as the cathode of ARLB is similar to that of ordinary lithium-ion battery with organic electrolyte, which works much better than the formerly reported. In addition, the cell systems exhibit good cycling performance. Therefore, it has great potential comparing with other batteries such as lead acid batteries and alkaline manganese batteries.  相似文献   

17.
A spinel LiMn2O4/C composite was synthesized by hydrothermally treating a precursor of manganese oxide/carbon (MO/C) composite in 0.1 M LiOH solution at 180 °C for 24 h, where the precursor was prepared by reducing potassium permanganate with acetylene black (AB). The AB in the precursor serves as the reducing agent to synthesize the LiMn2O4 during the hydrothermal process; the excess of AB remains in the hydrothermal product, forming the LiMn2O4/C composite, where the remaining AB helps to improve the electronic conductivity of the composite. The contact between LiMn2O4 and C in our composite is better than that in the physically mixed LiMn2O4/C material. The electrochemical performance of the LiMn2O4/C composite was investigated; the material delivered a high capacity of 83 mAh g−1 and remained 92% of its initial capacity after 200 cycles at a current density of 2 A g−1, indicating its excellent rate capability as well as good cyclic performance.  相似文献   

18.
LiMn2O4–y Br y nanoparticles were synthesized successfully for the first time by a room temperature solid-state coordination method. X-ray diffractometry patterns indicated that the LiMn2O4–y Br y powders were well-crystallized pure spinel phase. Transmission electron microscopy images showed that the LiMn2O4–y Br y powders consisted of small and uniform nanosized particles. Synthesis conditions such as the calcination temperature and the content of Br were investigated to optimize the ideal condition for preparing LiMn2O4–y Br y with the best electrochemical performances. The optimized synthesis condition was found in this work; the calcination temperature is 800 °C and the content of Br is 0.05. The initial discharge capacity of LiMn2O3.95Br0.05 obtained from the optimized synthesis condition was 134 mAh/g, which is far higher than that of pure LiMn2O4, indicating introduction of Br in LiMn2O4 is quite effective in improving the initial discharge capacity.  相似文献   

19.
To fabricate all-solid-state Li batteries using three-dimensionally ordered macroporous Li1.5Al0.5Ti1.5(PO4)3 (3DOM LATP) electrodes, the compatibilities of two anode materials (Li4Mn5O12 and Li4Ti5O12) with a LATP solid electrolyte were tested. Pure Li4Ti5O12 with high crystallinity was not obtained because of the formation of a TiO2 impurity phase. Li4Mn5O12 with high crystallinity was produced without an impurity phase, suggesting that Li4Mn5O12 is a better anode material for the LATP system. A Li4Mn5O12/3DOM LATP composite anode was fabricated by the colloidal crystal templating method and a sol-gel process. Reversible Li insertion into the fabricated Li4Mn5O12/3DOM LATP anode was observed, and its discharge capacity was measured to be 27 mA h g−1. An all-solid-state battery composed of LiMn2O4/3DOM LATP cathode, Li4Mn5O12/3DOM LATP anode, and a polymer electrolyte was fabricated and shown to operate successfully. It had a potential plateau that corresponds to the potential difference expected from the intrinsic redox potentials of LiMn2O4 and Li4Mn5O12. The discharge capacity of the all-solid-state battery was 480 μA h cm−2.  相似文献   

20.
S.H. Ye 《Electrochimica acta》2010,55(8):2972-164
Micrometer-scale pristine and phosphate-doped spinel LiMn2O4 materials with homogeneous size distribution were synthesized by a one-step hydrothermal method. The composition, structure and morphology of the as-prepared samples were characterized using inductively coupled plasma atomic emission spectroscopy (ICP-AES), chemical analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of phosphate doping on the structural and electrochemical properties of spinel LiMn2O4 was investigated by Fourier transform infrared (FT-IR) spectroscopy, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The phosphate-doped LiMn2O4 cathode (with a molar ratio of PO43−:LiMn2O4 = 1.5%) exhibits good high-rate discharge capability with 94 mAh/g at a current density of 2960 mA/g. The analyses demonstrate that compared with the pristine LiMn2O4 sample, the phosphate-doped samples have a relatively large Li-ion diffusion coefficient and smaller charge-transfer resistance due to the increase of the unit cell volume of spinel LiMn2O4 caused by the doping of phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号