首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The properties of spin coated CeO2-TiO2 films derived from three different sols containing equimolar quantities of cerium and titanium, fired at 500 °C have been investigated. The films have been deposited using cerium chloride and two different alkoxides and the influence of acetic acid added as a catalyst and modifier of microstructure of the coatings has also been studied. Optical, structural, thermal, and electrochemical properties have been studied and compared. Although gelation time of sols is dependent on the precursor material, enhanced transparency is exhibited by the films prepared with all the sols that have reached the state of gelation. The crystallization behavior and the porosity of the films are highly influenced by the precursor material. Acetic acid derived films with the highest porosity exhibit the highest diffusion coefficient for Li ions. Amorphicity prevailing in films derived from Ti propoxide based precursor sol as against the nanocrystalline films derived from the other sols endow higher ion insertion capacity to former films and highest coloration efficiency is attained when these films are incorporated into an electrochromic device. The highest reversibility for the charging and discharging processes and excellent electrochemical properties observed for the film derived from titanium propoxide prove its practical utility in electrochemical applications. Besides, the highest optical modulation for the electrochromic device comprising WO3 (electrochromic electrode) and titanium propoxide derived counter electrode is a manifestation of the suitability of the latter electrode in electrochromic window applications.  相似文献   

2.
M. Deepa 《Electrochimica acta》2006,51(10):1974-1989
A sol-gel derived acetylated peroxotungstic acid sol encompassing 4 wt.% of oxalic acid dihydrate (OAD) has been employed for the deposition of tungsten oxide (WO3) films by spin coating and dip coating techniques, in view of smart window applications. The morphological and structural evolution of the as-deposited spin and dip coated films as a function of annealing temperature (250 and 500 °C) has been examined and compared by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). A conspicuous feature of the dip coated film (annealed at 250 °C) is that its electrochromic and electrochemical properties ameliorate with cycling without degradation in contrast to the spin coated film for which these properties deteriorate under repetitive cycling. A comparative study of spin and dip coated nanostructured thin films (annealed at 250 °C) revealed a superior performance for the cycled dip coated film in terms of higher transmission modulation and coloration efficiency in solar and photopic regions, faster switching speed, higher electrochemical activity as well as charge storage capacity. While the dip coated film could endure 2500 color-bleach cycles, the spin coated film could sustain only a 1000 cycles. The better cycling stability of the dip coated film which is a repercussion of a balance between optimal water content, porosity and grain size hints at its potential for electrochromic window applications.  相似文献   

3.
TiO2 thin films were prepared by RF magnetron sputtering onto glass substrates and tungsten was deposited onto these thin films (deposition time 15-60 s) to form W-TiO2 bi-layer thin films. The crystal structure, morphology, and transmittance of these TiO2 and W-TiO2 bi-layer thin films were investigated. Amorphous, rutile, and anatase TiO2 phases were observed in the TiO2 and W-TiO2 bi-layer thin films. Tungsten thickness and annealing temperature had large effects on the transmittance of the W-TiO2 thin films. The W-TiO2 bi-layer thin films with a tungsten deposition time of 60 s were annealed at 200 °C-400 °C. The band gap energies of the TiO2 and the non-annealed and annealed W-TiO2 bi-layer thin films were evaluated using (αhν)1/2 versus energy plots, showing that tungsten thickness and annealing temperature had major effects on the transmittance and band gap energy of W-TiO2 bi-layer thin films.  相似文献   

4.
The effects of annealing temperature on the photocatalytic activity of nitrogen-doped (N-doped) titanium oxide (TiO2) thin films deposited on soda-lime-silica slide glass by radio frequency (RF) magnetron sputtering have been studied. Glancing incident X-ray diffraction (GIAXRD), Raman spectrum, scanning electron microscopy (SEM), atomic force microscopy (AFM) and UV-vis spectra were utilized to characterize the N-doped TiO2 thin films with and without annealing treatment. GIAXRD and Raman results show as-deposited N-doped TiO2 thin films to be nearly amorphous and that the rutile and anatase phases coexisted when the N-doped TiO2 thin films were annealed at 623 and 823 K for 1 h, respectively. SEM microstructure shows uniformly close packed and nearly round particles with a size of about 10 nm which are on the slide glass surface for TiO2 thin films annealed at 623 K for 1 h. AFM image shows the lowest surface roughness for the N-doped TiO2 thin films annealed at 623 K for 1 h. The N-doped TiO2 thin films annealed at 623 K for 1 h exhibit the best photocatalytic activity, with a rate constant (ka) of about 0.0034 h−1.  相似文献   

5.
FeTi alloy was prepared by a vacuum smelting method, iron titanium oxide nanotube arrays have been made directly by anodization of the FeTi alloy. Morphologies and microstructures of the samples were characterized by scanning electron microscope, transmission electron microscope, and X-ray diffractometer. Influences of temperature and H2O concentration on the morphologies of the nanotube arrays have been discussed in detail. Magnetic properties of the samples have also been investigated. The as-prepared samples were amorphous. When annealed at 500 °C and 550 °C, pesudobrookite Fe2TiO5 was obtained. At 600 °C, there were mixed Fe2TiO5, rutile TiO2, and α-Fe2O3. Magnetic performance of the nanotube arrays exhibited high sensitivity to temperature and changed interestingly upon annealing. The values of the coercivity and remanence were 340 Oe and 0.061 emu/g respectively for the sample annealed at 550 °C.  相似文献   

6.
Copper oxide (CuO) thin films were grown on glass substrates by low cost spray pyrolysis technique for three different molar concentrations (0.05 M, 0.10 M and 0.15 M), at a substrate temperature of 350 °C, and subsequently annealed at 400 °C for 2 h. The effects of precursor concentration and annealing on the structural, electrical and morphological properties of the crystallized films were investigated. X-ray diffractograms of the films showed the formation of single phase CuO with tenorite structure. The electrical properties of the films like carrier concentration, Hall co-efficient (RH), mobility and conductivity were studied from Hall effect measurements. The positive values of RH confirmed the p-type conductivity of the films. Resistivity decreased drastically by two orders of magnitude for the annealed films. The microstructures characterized by a scanning electron microscope for 0.15 M concentration of the precursor revealed that the morphology of the films was substantially affected by annealing. The film surface revealed uniformly distributed cluster of peanut shaped grains after annealing. The response of the as deposited and annealed CuO sensor to low concentration of ethanol (10 ppm) was compared. The annealed CuO film showed higher sensor response than the as-deposited CuO film did. The result suggested that annealing causes significant effect on the sensing performance of CuO to ethanol.  相似文献   

7.
Ar-ion-implantation to a dose of 1×1017 ions/cm2 was performed on cubic ZnS thin films with (111) preferred orientation deposited on fused silica glass substrates by vacuum evaporation. After ion implantation, ZnS films were annealed in flowing argon at different temperatures from 400 to 800 °C. The effects of ion implantation and post-thermal annealing on the structural and optical properties of ZnS films were investigated by X-ray diffraction (XRD), photoluminescence (PL) and optical transmittance measurements. XRD reveals that the diffraction peaks recover at ∼500 °C. The optical transmittances show that the bandgap of ZnS films blueshifts when annealed below 500 °C, and redshifts when annealed above 500 °C. PL results show that the intrinsic defect related emissions decrease with increasing annealing temperature from 400 to 500 °C, and increase with increasing annealing temperature from 500 to 800 °C. The observed PL emissions at 414 and 439 nm are attributed to the transitions of Zni→VZn and VS→VBM, respectively.  相似文献   

8.
TiO2/multi-wall carbon nanotube (MWNT) heterojunction arrays were synthesized and immobilized on Si(0 0 1) substrate as photocatalysts for inactivation of Escherichia coli bacteria. The vertically aligned MWNT arrays were grown on ∼5 nm Ni thin film deposited on the Si by using plasma enhanced chemical vapor deposition at 650 °C. Then, the MWNTs were coated by TiO2 using dip-coating sol-gel method. Post annealing of the TiO2/MWNTs at 400 °C resulted in crystallization of the TiO2 coating and formation of Ti-C and Ti-O-C carbonaceous bonds at the heterojunction. The visible light-induced photoinactivation of the bacteria increased from MWNTs to TiO2 to TiO2/MWNTs, in which the bacteria could even slightly breed on the MWNTs. In addition, the TiO2/MWNTs annealed at 400 °C showed a highly improved antibacterial activity than the TiO2/MWNTs annealed at 100 °C. The excellent visible light-induced photocatalytic efficiency of the TiO2/MWNTs/Si film annealed at 400 °C was attributed to formation of the carbonaceous bonds at the heterojunction, in contrast to the 100 °C annealed TiO2/MWNTs/Si sample which had no such effective bonds.  相似文献   

9.
Cadmium zinc selenide (Cd0.7Zn0.3Se) nanocrystalline thin films were chemically synthesized onto indium tin oxide (ITO)-coated glass substrate at relatively low temperature (<90 °C). The as-deposited films were annealed in air at 200, 300, and 400 °C for 60 min. The structure and surface morphology of the films were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The water-soluble conjugated polymer, poly(2-ethynyl-N-carboxy-propyl-pyridinium bromide) (LM3), with quaternary pyridinium salts was layered by dipping the as-deposited and annealed Cd0.7Zn0.3Se films in the aqueous polymer solution. This hybrid photoanode system was subjected to photoelectrochemical (PEC) study under a light illumination intensity of 80 mW/cm2.  相似文献   

10.
S.C. Ray  C.W. Pao  B. Bose  W.F. Pong 《Carbon》2006,44(10):1982-1985
Annealing effect of amorphous carbon thin films on Si(1 0 0) substrates is studied by normal incidence and angle dependent carbon K-edge X-ray absorption near-edge structure (XANES) spectroscopy. The angle dependence of the XANES signal shows that the graphitic basal planes are oriented perpendicular to the surface when the film is annealed at 1000 °C. Micro-Raman spectroscopy reveals two well-separated bands the D band at 1355 cm−1 and G band at ∼1600 cm−1, and their ID/IG intensity ratio indicates the formation of more graphitic film at higher annealing temperatures. X-ray diffraction pattern of 1000 °C temperature annealed film confirms the formation of graphite structure.  相似文献   

11.
Guodong Jiang  Lihua Zhu  Yaobin Ding 《Carbon》2010,48(12):3369-798
Composite films of TiO2 and carbon nanotubes (CNTs) were prepared on titanium sheets by liquid phase deposition and the photoelectrocatalytic (PEC) properties of the films were investigated through the degradation of methyl orange (MO) in 0.1 M solutions. It was demonstrated that CNTs in the TiO2 film significantly decreased the charge transfer resistance and increased the anodic photocurrent response of the film under UV light irradiation when the bias was above −0.1 V. The PEC performance of the CNT-based composite film could be tuned by controlling the preparation parameters including the deposition time and calcination temperature. The deposition time and calcination temperature were optimized at 1 h and 450 °C, respectively. On the TiO2/CNT film prepared under the optimized conditions, 95% of the added MO (10 mg L−1) was degraded within 90 min, which was much higher than the 60% removal seen on the pure TiO2 films.  相似文献   

12.
Dense TiO2 and TiO2/CdSe coupled nanocrystalline thin films were synthesized onto ITO coated glass substrate by chemical route at relatively low temperature (≤100 °C). TiO2 films were nanocrystalline and crystallinity disappears after CdSe deposition as evidenced by X-ray powder diffraction. Surface morphology and physical appearance of films were studied from SEM and actual photo-images, reveals dense nature of TiO2 (10-12 nm spherical grains, faint violet) and CdSe (80-90 nm spherical grains, deep brown), respectively. Presence of two absorption edges in UV spectra implies existence of separate phases rather than composite formation. TiO2 film was found to have higher water contact angle (71°) than TiO2/CdSe (61°) and CdSe (56°). I-V and stability tests of photo-electrochemical cells were performed with TiO2 and TiO2/CdSe film electrodes (under light of illumination intensity 80 mW/cm2) in lithium iodide as an electrolyte using two-electrode system.  相似文献   

13.
From mixed (anatase and rutile) bulk particles, anatase TiO2 nanotubes are synthesized in this study by an alkaline hydrothermal reaction and a consequent annealing at 300-400 °C. The physical and electrochemical properties of the TiO2 nanotube are investigated for use as an anode active material for lithium-ion batteries. Upon the first discharge-charge sweep and simultaneous impedance measurements at local potentials, this study shows that interfacial resistance decreases significantly when passing lithium ions through a solid electrolyte interface layer at the lithium insertion/deinsertion plateaus of 1.75/2.0 V, corresponding to the redox potentials of anatase TiO2 nanotubes. For an anatase TiO2 nanotube containing minor TiO2(B) phase obtained after annealing at 300 °C, the high-rate capability can be strongly enhanced by an isotropic dispersion of TiO2 nanotubes to yield a discharge capacity higher than 150 mAh g−1, even upon 100 cycles of 10 C-rate discharge-charge operations. This is suitable for use as a high-power anode material for lithium-ion batteries.  相似文献   

14.
Titanium dioxide thin films were deposited on quartz substrates kept at different O2 pressures using pulsed laser deposition technique. The effects of reactive atmosphere and annealing temperature on the structural, morphological, electrical and optical properties of the films are discussed. Growth of films with morphology consisting of spontaneously ordered nanostructures is reported. The films growth under an oxygen partial pressure of 3 × 10−4 Pa consist in nanoislands with voids in between them whereas the film growth under an oxygen partial pressure of 1 × 10−4 Pa, after having being subjected to annealing at 500 °C, consists in nanosized elongated grains uniformly distributed all over the surface. The growth of nanocrystallites with the increase in annealing temperature is explained on the basis of the critical nuclei-size model.  相似文献   

15.
Titanium oxide films were formed on metallic titanium substrates by employing a thermal treatment at 800 °C under air atmosphere. Component and microstructure of the oxide films were characterized by XRD and SEM method. Water contact angles on titanium oxide film surface were measured in both dark and sunlight illumination condition. Corrosion tests were carried in seawater solution under different illuminate conditions. Electrochemical impedance spectroscopy (EIS) techniques were used to study the changes on TiO2 film. Results indicated that: hydrophilic TiO2 film suffered a severe photo-corrosion effect in seawater due to their semiconductor properties under sunlight condition, but the hydrophobic TiO2 film under dark condition exhibited a good corrosion resistance.  相似文献   

16.
The microstructure and electrical properties of in-situ annealed carbon films is studied in this paper. In-situ annealing (150 °C to 600 °C) was done during the deposition of carbon films with −300 V substrate bias. Transmission electron microscopy and two points electrical probing studies were performed and the deduced transition for vertical orientated graphitic planes occurs at temperatures above 400 °C. The microstructure of the films strongly depends on the deposition temperature of the films (room temperature, 400 °C and 600 °C). Electrical conductivity of the film strongly depends on texturing due to the formation of preferred orientation in the vertical direction. The vertically orientated carbon (VOC) sheet provides effective nanochannels for electron transport, thus significantly improves the electrical properties of the annealed film.  相似文献   

17.
WO3 films have been prepared on to IrO2-coated Ti substrate by cathodic deposition, and as-deposited and annealed films have been characterized using XRD, TEM, Raman and FT-IR spectroscopy. The as-deposited film consists of nanocrystalline, orthorhombic WO3·H2O and this phase transforms to amorphous WO3 by annealing at 250 °C and to monoclinic WO3 by annealing at and above 350 °C. The as-deposited and annealed films have been used as anodes for electrochemical decomposition of phenol in aqueous solutions with and without chloride ions. The monoclinic WO3 anodes prepared by annealing at 350 and 400 °C show relatively high electrochemical activity in the chloride-containing solution. In addition, the anodes possess high chemical and physical stabilities: very low dissolution rate of WO3 during the electrolysis and good adhesion to the substrate. Thus, WO3 anodes may be promising materials for anodic oxidation of bio-refractory organics in wastewater, although further improvement of electrochemical activity is needed for more effective decrease in total organic carbons in wastewater.  相似文献   

18.
The generation of TiO2 nanoparticles by the thermal decomposition of titanium tetraisopropoxide (TTIP) was carried out experimentally using a tubular electric furnace at various synthesis temperatures (700-1300 °C) and TTIP heating temperatures (80-110 °C). The photocatalytic activity of the resulting TiO2 nanoparticles was examined by measuring the rate of methylene blue decomposition. The TiO2 nanoparticles were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) measurements and transmission electron microscopy (TEM). The crystallite size and crystallinity increased with increasing synthesis temperature and TTIP heating temperature. A TTIP heating temperature and synthesis temperature of 95 °C and 900 °C, respectively, were found to be the optimal synthesis conditions. The primary particle diameter obtained under optimum synthesis conditions was considerably smaller than the commercial photocatalyst (Degussa, P25). The specific surface areas were more than 134.4 m2 g− 1. Under the optimal conditions, the photocatalytic activity for methylene blue was higher than that of the commercial photocatalyst.  相似文献   

19.
Indium tin oxide (ITO) thin films were prepared by a sol-gel spin coating method, fired, and then annealed in the temperature range of 450-600°. The XRD patterns of the thin films indicated the main peak of the (2 2 2) plane and showed a higher degree of crystallinity with an increase in the annealing temperature. Upon annealing the films at 500 and 600°, two binding energy levels of Sn4+ ion of 486.9 eV and 486.6 eV, respectively, were measured in the XPS spectra. The ITO film that was annealed at 600° contained two oxidation states of Sn, Sn2+ and Sn4+, and it had a higher sheet resistance based on a rather low doping concentration of Sn4+. The film that was annealed at 500° and subsequently treated with 0.1 N HCl solution for 40 s showed a sheet resistance of 225 Ω/square. The surface treatment by the acidic solution diminished the RMS (root mean square) roughness value and the residual carbon content (XPS peak intensity of carbon) of the ITO films. It seems that the acid-cleaning of the ITO thin films led to a decrease of the surface roughness and sheet resistance.  相似文献   

20.
Titanium dioxide (TiO2) thin films were deposited from methanolic solution onto fluorine doped tin oxide coated conducting glass substrates by spray pyrolysis technique. The electrochemical properties of TiO2 thin films were investigated using cyclic voltammetry, chronoamperometry, chronocoulometry and iono-optical studies, in 0.1N H2SO4 electrolyte. Performance of the films deposited at three different substrate temperatures, viz. 350, 400 and 450 °C is discussed in view of their utilization in electrochromic devices, as counter electrode. The magnitude of charge storage capacity, Q/t (4.75-6.13 × 10−3 mC/(cm2 nm)) and colouration efficiency (3.2-4.3 cm2/mC) of TiO2 rank these films among the promising counter electrodes in electrochromic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号