首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
W Ni  H Ba  AA Lutich  F Jäckel  J Feldmann 《Nano letters》2012,12(9):4647-4650
Surface-chemistry of individual, optically trapped plasmonic nanoparticles is modified and accelerated by plasmonic overheating. Depending on the optical trapping power, gold nanorods can exhibit red shifts of their plasmon resonance (i.e., increasing aspect ratio) under oxidative conditions. In contrast, in bulk exclusively blue shifts (decreasing aspect ratios) are observed. Supported by calculations, we explain this finding by local temperatures in the trap exceeding the boiling point of the solvent that cannot be achieved in bulk.  相似文献   

2.
We introduce a new design approach for surface-enhanced Raman spectroscopy (SERS) substrates that is based on molding the optical powerflow through a sequence of coupled nanoscale optical vortices "pinned" to rationally designed plasmonic nanostructures, referred to as Vortex Nanogear Transmissions (VNTs). We fabricated VNTs composed of Au nanodiscs by electron beam lithography on quartz substrates and characterized their near- and far-field responses through combination of computational electromagnetism, and elastic and inelastic scattering spectroscopy. Pronounced dips in the far-field scattering spectra of VNTs provide experimental evidence for an efficient light trapping and circulation within the nanostructures. Furthermore, we demonstrate that VNT integration into periodic arrays of Au nanoparticles facilitates the generation of high E-field enhancements in the VNTs at multiple defined wavelengths. We show that spectrum shaping in nested VNT structures is achieved through an electromagnetic feed-mechanism driven by the coherent multiple scattering in the plasmonic arrays and that this process can be rationally controlled by tuning the array period. The ability to generate high E-field enhancements at predefined locations and frequencies makes nested VNTs interesting substrates for challenging SERS applications.  相似文献   

3.
We demonstrate large and reversible tuning of plasmonic properties of gold nanoparticles mediated by the reversible breaking and making of linear and branched chains of gold nanoparticles adsorbed on an ultrathin (1 nm) responsive polymer film. Atomic force microscopy revealed that at pH below the isoelectric point of the polybase (extended state of the polymer chains), gold nanoparticles adsorbed on the polymer layer existed primarily as individual nanoparticles. On the other hand, at higher pH, the polymer chains transition from coil to globule (collapsed) state, resulting in the formation of linear and branched chains with strong interparticle plasmon coupling. Reversible aggregation of the nanoparticles resulted in large and reversible change in the optical properties of the metal nanostructure assemblies. In particular, we observed a large redistribution of the intensity between the individual and coupled plasmon bands and a large shift (nearly 95 nm) in the coupled plasmon band with change in pH. Large tunability of plasmonic properties of the metal nanostructure chains reported here is believed to be caused by the chain aggregates of nanoparticles and un-cross-linked state of the adsorbed polymer enabling large changes in polymer chain conformation.  相似文献   

4.
Guo L  Ferhan AR  Lee K  Kim DH 《Analytical chemistry》2011,83(7):2605-2612
Here, we present a mean to expand the use of individual metallic nanoparticles to two-dimensional plasmonic nanoarrays. An optical detection platform to track down localized surface plasmon resonance (LSPR) signals of individual nanoparticles on substrates was built for the application of plasmonic nanoarrays. A pseudoimage of nanoparticles on a substrate was reconstructed from their scattering spectra obtained by scanning a user-defined area. The spectral and spatial resolutions of the system were also discussed in detail. Most importantly, we present a method to normalize the localized surface plasmon resonance from geometrically different nanoparticles. After normalization, plasmonic responses from different particles become highly consistent, creating well-fitted dose-response curves of both surrounding refractive index changes and receptor-analyte binding to the surface of individual nanoparticles. Finally, the proof-of-concept system for plasmonic nanoarray detection is demonstrated by the measurement of the aptamer-thrombin binding event.  相似文献   

5.
Graphene is emerging as a promising material for plasmonics applications due to its strong light-matter interactions, most of which are theoretically predicted but not yet experimentally realized. Therefore, the integration of plasmonic nanoparticles to create metal nanoparticle/graphene composites enables numerous phenomena important for a range of applications from photonics to catalysis. For these applications it is important to articulate the coupling of photon-based excitations such as the interaction between plasmons in each of the material components, as well as their charge-based interactions dependent upon the energy alignment at the metal/graphene interface. These coupled phenomena underpin an active application area in graphene-based composites due to nanoparticle-dependent surface-enhanced Raman scattering (SERS) of graphene phonon modes. This study reveals the coupling of a graphene/SiC support with Ga-nanoparticle-localized surface plasmon resonance, which is of particular interest due to its ability to be tuned across the UV into the near-IR region. This work is the first demonstration of the evolving plasmon resonance on graphene during the synthesis of surface-supported metal nanoparticles, thus providing evidence for the theoretically predicted screening revealed by a damped resonance with little energy shift. Therefore, the role of the graphene/substrate heterojunction in tailoring the plasmon resonance for nanoplasmonic applications is shown. Additionally, the coupled phenomena between the graphene-Ga plasmon properties, charge transfer, and SERS of graphene vibrational modes are explored.  相似文献   

6.
We show that sensing in the nonlinear optical regime using multipolar surface plasmon resonances is more sensitive in comparison to sensing in the linear optical regime. Mie theory, and its extension to the second harmonic generation from a metallic nanosphere, is used to describe multipolar second harmonic generation from silver metallic nanoparticles. The standard figure of merit of a potential plasmonic sensor based on this principle is then calculated. We finally demonstrate that such a sensor is more sensitive to optical refraction index changes occurring in the vicinity of the metallic nanoparticle than its linear counterpart.  相似文献   

7.
Plasmonic nanowires with sub-100-nm rectangular cross sections were found to exhibit a strong transverse plasmon peak at visible wavelengths. By correlating atomic force microscopy measurements of individual nanobelts with their dark-field scattering spectra, it is seen that the transverse peak tunes with cross-sectional aspect ratio. Simulations revealed that the scattering plasmonic modes are transverse antisymmetric excitations across the nanobelt width. Unlike larger diameter silver nanowires, these nanobelts exhibit sharp, tunable plasmon resonances similar to those of nanoparticles.  相似文献   

8.
9.
Rotated dimers are the common products during the deposition of Ag triangular nanoplates dimers on the glass substrate. In this work, modeling a silver dimer that it rotated around the Z axis shows that the wavelength and intensity of the dark plasmon are flexibly modulated by changing the angle’s rotation. Our results show that there are four main plasmonic bands. These resonances are formed due to the plasmon coupling between the dipole mode and quadrupole mode. In addition, the charge density distributions show a high degree of localization near both sides and corners of the nanotriangles. Moreover, It is found that the figure of merit (FOM) has the highest value for θ?=?71° due to the lowest value of the full wide at half maximum (FWHM) of the resonance peak. This study may be used to build optical sensors based on metallic nanoparticles with new plasmonic properties.  相似文献   

10.
Based on an extension of the discrete sources method (DSM) our newly developed computer model enables us to analyze polarised light scattering by 3D non-spherical particles accounting for non-local effects (NLE) for plasmonic nanoparticles. Using this theory, computer simulations for spheroid particles of different shape have been conducted. The influence of the NLE both considering the Hydrodynamical Drude model and the generalised non-local optical response on the spectral scattering properties has been analyzed. It has been found that there is a strong influence of particle shape and polarisation of the incident radiation on the scattering properties of a plasmonic particle. Additionally, it has been demonstrated that NLE for non-spherical 3D particles leads to a decrease in intensity of the corresponding localised surface plasmon resonance and provides a blue shift of the plasmon resonance for the non-spherical particles.  相似文献   

11.
Tsai CY  Lin JW  Wu CY  Lin PT  Lu TW  Lee PT 《Nano letters》2012,12(3):1648-1654
We investigate the optical properties of gold nanoring (NR) dimers in both simulation and experiment. The resonance peak wavelength of gold NR dimers is strongly dependent on the polarization direction and gap distance. As the gold NR particles approach each other, exponential red shift and slight blue shift of coupled bonding (CB) mode in gold NR dimers for longitudinal and transverse polarizations are obtained. In finite element method analysis, a very strong surface plasmon coupling in the gap region of gold NR dimers is observed, whose field intensity at the gap distance of 10 nm is enhanced 23% compared to that for gold nanodisk (ND) dimers with the same diameter. In addition, plasmonic dimer system exhibits a great improvement in the sensing performance. Near-field coupling in gold NR dimers causes exponential increase in sensitivity to refractive index of surrounding medium with decreasing the gap distance. Compared with coupled dipole mode in gold ND dimers, CB mode in gold NR dimers shows higher index sensitivity. This better index sensing performance is resulted form the additional electric field in inside region of NR and the larger field enhancement in the gap region owing to the stronger coupling of collective dipole plasmon resonances for CB mode. These results pave the way to design plasmonic nanostructures for practical applications that require coupled metallic nanoparticles with enhanced electric fields.  相似文献   

12.
Gentle manipulation of micrometer-sized dielectric objects with optical forces has found many applications in both life and physical sciences. To further extend optical trapping toward the true nanometer scale, we present an original approach combining self-induced back action (SIBA) trapping with the latest advances in nanoscale plasmon engineering. The designed resonant trap, formed by a rectangular plasmonic nanopore, is successfully tested on 22 nm polystyrene beads, showing both single- and double-bead trapping events. The mechanism responsible for the higher stability of the double-bead trapping is discussed, in light of the statistical analysis of the experimental data and numerical calculations. Furthermore, we propose a figure of merit that we use to quantify the achieved trapping efficiency and compare it to prior optical nanotweezers. Our approach may open new routes toward ultra-accurate immobilization and arrangement of nanoscale objects, such as biomolecules.  相似文献   

13.
This work is devoted to the fundamental understanding of the interaction between acoustic vibrations and surface plasmons in metallic nano-objects. The acoustoplasmonic properties of coupled spherical gold nanoparticles and nanodisk trimers are investigated experimentally by optical transmission measurements and resonant Raman scattering experiments. For excitation close to resonance with the localized surface plasmons of the nanodisk trimers, we are able to detect several intense Raman bands generated by the spherical gold nanoparticles. On the basis of both vibrational dynamics calculations and Raman selection rules, the measured Raman bands are assigned to fundamental and overtones of the quadrupolar and breathing vibration modes of the spherical gold nanoparticles. Simulations of the electric near-field intensity maps performed at the Raman probe wavelengths showed strong localization of the optical energy in the vicinity of the nanodisk trimers, thus corroborating the role of the interaction between the acoustic vibrations of the spherical nanoparticles and the surface plasmons of the nanodisk trimers. Acoustic phonons surface enhanced Raman scattering is here demonstrated for the first time for such coupled plasmonic systems. This work paves the way to surface plasmon engineering for sensing the vibrational properties of nanoparticles.  相似文献   

14.
By varying the relative dimensions of the central and peripheral disks of a plasmonic nanocluster, the depth of its Fano resonance can be systematically modified; spectral windows where the scattering cross section of the nanocluster is negligible can be obtained. In contrast, electron-beam excitation of the plasmon modes at specific locations within the nanocluster yields cathodoluminescence spectra with no Fano resonance. By examining the selection rules for plasmon excitation in the context of a coupled oscillator picture, we provide an intuitive explanation of this behavior based on the plasmon modes observed for optical and electron-beam excitation in this family of nanostructures.  相似文献   

15.
Lu Y  Liu GL  Lee LP 《Nano letters》2005,5(1):5-9
The formation of high-density silver nanoparticles and a novel method to precisely control the spacing between nanoparticles by temperature are demonstrated for a tunable surface enhanced Raman scattering substrates. The high-density nanoparticle thin film is accomplished by self-assembling through the Langmuir-Blodgett (LB) technique on a water surface and transferring the particle monolayer to a temperature-responsive polymer membrane. The temperature-responsive polymer membrane allows producing a dynamic surface enhanced Raman scattering substrate. The plasmon peak of the silver nanoparticle film red shifts up to 110 nm with increasing temperature. The high-density particle film serves as an excellent substrate for surface-enhanced Raman spectroscopy (SERS), and the scattering signal enhancement factor can be dynamically tuned by the thermally activated SERS substrate. The SERS spectra of Rhodamine 6G on a high-density silver particle film at various temperatures is characterized to demonstrate the tunable plasmon coupling between high-density nanoparticles.  相似文献   

16.
Discontinuous plasmonic‐3D photonic crystal hybrid structures are fabricated in order to evaluate the coupling effect of surface plasmon resonance and the photonic stop band. The nanostructures are prepared by silver sputtering deposition on top of hydrophobic 3D photonic crystals. The localized surface plasmon resonance of the nanostructure has a symbiotic relationship with the 3D photonic stop band, leading to highly tunable characteristics. Fluorescence enhancements of conjugated polymer and quantum dot based on these hybrid structures are studied. The maximum fluorescence enhancement for the conjugated polymer of poly(5‐methoxy‐2‐(3‐sulfopropoxy)‐1,4‐phenylenevinylene) potassium salt by a factor of 87 is achieved as compared with that on a glass substrate due to the enhanced near‐field from the discontinuous plasmonic structures, strong scattering effects from rough metal surface with photonic stop band, and accelerated decay rates from metal‐coupled excited state of the fluorophore. It is demonstrated that the enhancement induced by the hybrid structures has a larger effective distance (optimum thickness ≈130 nm) than conventional plasmonic systems. It is expected that this approach has tremendous potential in the field of sensors, fluorescence‐imaging, and optoelectronic applications.  相似文献   

17.
F Wen  J Ye  N Liu  P Van Dorpe  P Nordlander  NJ Halas 《Nano letters》2012,12(9):5020-5026
Planar clusters of coupled plasmonic nanoparticles support nanoscale electromagnetic "hot spots" and coherent effects, such as Fano resonances, with unique near and far field signatures, currently of prime interest for sensing applications. Here we show that plasmonic cluster properties can be substantially modified by the addition of individual, discrete dielectric nanoparticles at specific locations on the cluster, introducing new plasmon modes, or transmuting existing plasmon modes to new ones, in the resulting metallodielectric nanocomplex. Depositing a single carbon nanoparticle in the junction between a pair of adjacent nanodisks induces a metal-dielectric-metal quadrupolar plasmon mode. In a ten-membered cluster, placement of several carbon nanoparticles in junctions between multiple adjacent nanoparticles introduces a collective magnetic plasmon mode into the Fano dip, giving rise to an additional subradiant mode in the metallodielectric nanocluster response. These examples illustrate that adding dielectric nanoparticles to metallic nanoclusters expands the number and types of plasmon modes supported by these new mixed-media nanoscale assemblies.  相似文献   

18.
Choi BH  Lee HH  Jin S  Chun S  Kim SH 《Nanotechnology》2007,18(7):075706
To understand the collective properties of nanoparticles, it is necessary to control the particle size, spacing and ordering. Here we describe the chemical synthesis of well-controlled silver nanoparticles, the wet coat preparation and the optical properties of its film. The light incidence angle and polarization dependency of the resonant spectra show distinctive surface plasmon resonance extinction peaks for isolated particles and the coupled modes of neighbouring particles. Furthermore, we discuss the thermal treatment and dielectric surrounding effects on the optical properties of silver nanoparticle film.  相似文献   

19.
Noble metal nanostructures support plasmon resonances—collective oscillation of charge carriers at optical frequencies—and serve as effective tools to create bright light sources at the nanoscale. These sources are useful in broad application areas including, super-resolution imaging and spectroscopy, nanolithography, and near-field optomechanical transducers. The feasibility of these applications relies on efficient conversion of free-space propagating light to plasmons. Recently, we demonstrated a hybrid nanofocusing scheme for efficient coupling of light to plasmons at the apex of a scanning probe. In the approach, free-space light is coupled to propagating surface plasmon polaritons (SPPs) on the tapered shaft of the scanning probe. The SPPs propagate adiabatically towards the probe tip where they are coupled to localized plasmons (LSPs). The nanofocusing scheme was explored in a near-field scanning optical microscope for super-resolution imaging, near-field transduction of nanomechanical vibrations, and local detection of ultrasound. Owing to the strong concentration of light at the probe, significant heating of the tip and a sample positioned in the optical near-field is expected. This paper investigates the local heating produced by the plasmonic nanofocusing probe under steady-state conditions using the tip-enhanced Raman scattering approach. In addition, a finite element model is explored to study the coupling of free propagating light to LSPs, and to estimate the temperature rise expected in a halfspace heated by absorption of the LSPs. This study has implications for exploring the plasmonic nanofocusing probe in heat-assisted nanofabrication and fundamental studies of nanoscale heat transport in materials.  相似文献   

20.
A high‐order discontinuous Galerkin time‐domain (DGTD) method for Maxwell's equations for dispersive media of Drude type is derived and then used to study the coupling of 2D silver nanowires, which have potential applications in optical circuits without the restriction of diffraction limits of traditional dielectric waveguides. We have demonstrated the high accuracy of the DGTD for the electromagnetic wave scattering in dispersive media and its flexibility in modelling the plasmon resonant phenomena of coupled silver nanowires. Specifically, we study the cross sections of coupled nanowires, the dependence of the resonance on the number of nanowires with more resolved resonance information than the traditional FDTD Yee scheme, time‐domain behaviour of waves impinging on coupled silver nanowires of a funnel configuration, and the energy loss of resonant modes in a linear chain of circular and ellipse nanowires. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号