首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
以纳米金胶体作为检测工具,可以建立一种简单、快捷、灵敏度高的水中汞离子检测方法.其做法是:使用柠檬酸钠为还原剂合成酒红色的纳米金胶体,加入4’4联吡啶(Dpy)将纳米金颗粒聚集在一起,纳米金胶体的颜色会变化为蓝黑色.若水中没有汞离子,纳米金颗粒会保持团聚状态,颜色不变;若水中含有汞离子,则纳米金颗粒会发生反团聚现象,再次分散于水中,混合溶液的颜色变回酒红色.通过观察混合溶液的颜色变化,来判断水中是否含有汞离子,实现水中汞离子的检测.同时对不同浓度汞离子样品的紫外-可见吸收光谱进行分析,可以看出吸光度比值(A520/A640)与汞离子浓度之间呈现良好的线性度,并计算得到本方法的水中汞离子检测极限为54nmol/L(3δ).通过汞离子样品与其他多个离子样品的对比实验,证明本测试方法对汞离子的高选择性.本方法可用于水中汞离子的快速实时检测.  相似文献   

2.
采用晶种-溶液生长法制备了单分散性良好、长径比均一的Au纳米棒, 利用H2PdCl4作为前驱体, CTAC作为软模版, 抗坏血酸作为还原剂对Au纳米棒进行改性合成了金/钯哑铃状结构纳米晶(Au/Pd NDs)。采用透射电子显微镜(TEM)、X射线能谱仪(EDS)和紫外-可见分光光度计(UV-Vis-NIR)对样品的结构和形貌进行表征, 探讨了铃铛状结构形成的机理, 并研究了其对硼氢化钠还原对硝基苯酚反应的催化性能。结果表明: 大量的多晶钯颗粒定向选择生长在金纳米棒(AuNRs)两端, 形成哑铃状结构; 通过调控还原剂与前驱体的比例, 铃铛尺寸连续可调。当钯的分散性好且总的催化活性位点多时, 金/钯哑铃状结构纳米晶催化对硝基苯酚还原的效率高。钯颗粒尺寸为20.7 nm的Au/Pd NDs(0.04 mg/mL)催化对硝基苯酚还原的反应速率常数可达0.44 min-1, 证明其是一种非常有效的催化剂。  相似文献   

3.
CeVO_4纳米棒的合成及其磁性能研究   总被引:1,自引:0,他引:1  
以Na2EDTA为模板导向剂,利用水热法成功合成了单晶CeVO4纳米棒.使用X射线衍射仪(XRD)、透射电镜(TEM)、高分辨透射电镜(HRTEM)和超导量子磁强计(SQUID)等对产物的结构和磁学性能进行了表征.结果表明.产物为CeVO4纳米棒,其长度为600nm左右,直径为80nm左右.研究发现,模板剂Na2EDTA和生长溶液的pH值决定着CeVO4纳米晶体的形貌与生长机制.进一步对CeVO4纳米棒的磁性进行研究,表明在低温下,由于受到CeVO4纳米晶体的尺寸效应和Ce离子4f电子的影响,CeVO4纳米晶体表现出明显的超顺磁性,而强烈的一维各向异性和Eu3+掺杂则显著提高了CeVO4纳米棒的磁性能.  相似文献   

4.
用种子生长法合成小型金纳米棒,改变合成参数可调控其形貌和性能。使用紫外-可见-近红外分光光度计和透射电子显微镜(TEM)测试和观察了金纳米棒的消光特性和形貌,研究了AgNO3、十六烷基三甲基溴化铵(CTAB)和籽晶的用量对金纳米棒的形貌和性能的影响。结果表明:在不同条件下制备的金纳米棒具有良好的重现性。在(0.01 mol/L) AgNO3用量为0.035 mL、(0.1 mol/L) CTAB用量为11 mL、籽晶用量为1.1 mL的最佳条件下合成的金纳米棒,其长径比约为3.8,平均长度约为34 nm,形貌均匀性和分散性良好。这种小型金纳米棒可用于检测残留物福美双(Thiram)。  相似文献   

5.
羟基功能化离子液体氯化1-(3-羟丙基)-3-甲基咪唑中,微波加热还原HAuCl4.4H2O制备了多边形单晶金纳米片,制备过程不需要额外添加包覆剂。产物用扫描电镜、透射电镜、选区电子衍射、能谱、X射线衍射和紫外可见分光光度计等进行了表征。产物的形状和大小可以通过控制反应条件如反应温度、反应物浓度等进行控制。50毫克HAuCl4.4H2O溶解于1毫升羟基功能化离子液体中,在140℃进行还原反应时,得到平面尺寸达16微米,厚度约为35纳米的单晶金纳米片。在单晶金纳米片的制备反应中,离子液体氯化1-(3-羟丙基-)3-甲基咪唑同时起到了反应介质、还原剂和包覆剂的作用。  相似文献   

6.
采用低温湿化学还原法,以Bi(NO3)3·5H2O和TeO2为原料,通过乙二胺四乙酸(EDTA)参与调节使反应体系为中性,以NaBH4为还原剂,以表面活性剂Brij56(HO(CH2CH2O)10C16H33)为晶体生长调控剂,制备了Bi2Te3纳米棒.通过X射线衍射(XRD)、X射线荧光探针(XRF),扫描电镜(SEM)、透射电镜(TEM)和高分辨透射电镜(HRTEM)对样品的组成和结构进行了分析,同时初步探讨了Bi2Te3纳米棒的生长机理.结果表明,制备的Bi2We3纳米棒直径在30nm左右,长度在400nm左右,具有单晶结构;反应温度和Brij56的浓度对晶体形貌有较大的影响.  相似文献   

7.
溶胶-凝胶法制备硼酸镁纳米棒   总被引:8,自引:0,他引:8  
以硝酸镁、硼酸、柠檬酸为原料, 利用溶胶-凝胶法及不同温度后续煅烧制备了硼酸镁(MgB4O7和Mg2B2O5)纳米棒. 用X射线衍射(XRD)分析了纳米棒的结构, 用扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察了纳米棒的形貌. 实验结果表明, 750℃煅烧产物为MgB4O7纳米棒, 950℃煅烧产物为Mg2B2O5纳米棒, 纳米棒的径长比可以通过调节原料硝酸镁和硼酸的比例来控制. 用自催化机理解释了硼酸镁纳米棒的生长机理.  相似文献   

8.
吕雪  刘洁  丁素芳 《化工新型材料》2014,(8):157-158,161
在离子液体/水双液相体系中,以双硫腙为萃取剂,将银离子从水相萃取到离子液体相中,在超声辅助条件下将离子液体相中的银离子还原,制备了银/1-丁基-3-甲基咪唑六氟磷酸(Ag/[BMIm]PF6)纳米流体。制得的纳米流体用纳米粒度仪、透射电子显微镜和紫外-可见分光光度计进行了表征,结果表明,银纳米粒子的平均粒度在11nm左右,在离子液体中分布均匀。双硫腙不仅有效地阻止了纳米粒子间的团聚及氧化,而且增强了纳米粒子在离子液体中的可溶性,使得纳米银粒子在离子液体中有良好的分散性和稳定性。  相似文献   

9.
以氯金酸为原料,DMF(N,N-二甲基甲酰胺)为溶剂及还原剂,苯乙烯-马来酸酐共聚物为大分子稳定剂,合成了金纳米微粒。通过紫外-可见吸收光谱、透射电子显微镜等方法对纳米金样品进行了表征。结果表明:所得到的金纳米微粒可以在520 nm~530 nm范围内产生明显的纳米金所具有的特征等离子共振吸收峰,金纳米微粒的尺寸在3 nm~5nm且具有较窄的分布,证明苯乙烯-马来酸酐共聚物可以对金纳米微粒表面产生较好的修饰作用,从而为制备纳米金材料提供了一种新的途径。  相似文献   

10.
在离子液体/水双液相体系中,以聚乙烯基吡咯烷酮(PVP)为萃取剂,将[AuCl4]-从水相萃取到离子液体相中。在超声辅助条件下用四氢硼钠将离子液体相中的金离子还原,制备了金/1-丁基-3-甲基咪唑六氟磷酸(Au/[BMIm]PF6)纳米流体。制得的金纳米流体用纳米粒度仪和透射电子显微镜进行表征,结果表明,金纳米粒子的平均粒度在11.7nm左右,在离子液体中分布均匀;红外光谱分析结果表明,PVP与金纳米粒子之间存在化学键合作用,对纳米金具有表面修饰的作用,PVP不仅增强了金纳米粒子在离子液体中的溶解性,而且提高了纳米金的抗氧化能力并有效阻止了金纳米粒子间的团聚,使得金纳米粒子在离子液体中有良好的分散性和稳定性。  相似文献   

11.
Silver nanorods have been grown by electrodeposition into thin film porous alumina. Transmission measurements show two peaks related to the transverse and longitudinal resonance of the nanorods. The behaviour of the longitudinal resonance peak is found to vary with nanorod length and the spectral position to depend on nanorod diameter. As the distance between the nanorods is decreased a small blue-shift of the longitudinal peak is observed. Depositing a small gold cap on top of the silver nanorods causes a red-shift of the longitudinal peak whilst, conversely, the longitudinal peak of gold nanorod arrays is comparatively insensitive to the deposition of a silver cap. Gold-silver alloy nanorods were also deposited from a mixed salt bath and a linear dependence of the transverse peak position on alloy composition was observed.  相似文献   

12.
Localized surface plasmon resonance (LSPR) sensitivity to the surrounding medium refractive index has been studied for silver nanorods using Gans theory including the effect of retardation and surface scattering. The simulation results show the refractive index sensitivity (eV/RIU) maxima positions at width of 9, 6, and 4 nm for aspect ratios of 2, 3, and 4, respectively. Based on the sensing figure of merit (FOM), 9 nm is found to be a significant nanorod width, where the FOM dependence on width with respect to aspect ratio inverts. However, the optimal nanorod width for both the FOM and the modified figure of merit (MFOM) is about 6 nm for aspect ratios of 2, 3, and 4. A comparison with gold shows that silver nanorods exhibit relatively higher FOM and MFOM and thus, making them potential candidates for biochemical nanosensing applications.  相似文献   

13.
We characterized the stability of the gold nanorods synthesized by means of a seed mediated growth approach in the presence of AgNO3, which consists of synthesis of small diameter seed particles (approximately 4 nm) and subsequent growth of these nanoparticles into nanorods by addition to gold salt solution containing cetyltrimethylammonium bromide (CTAB) in the presence of ascorbic acid. The presence of silver nitrate significantly enhanced the nanorod synthesis as previously reported. However, the synthesized nanorods were unstable and reshaped in aqueous environment; the continuous blue-shift of the 2nd plasmon bands was monitored and the changes in the nanorod morphologies were also observed by electron microscopy with increasing storage time. This reshaping was observed at wide CTAB concentration range regardless of the removal of the unreacted gold or silver ions.  相似文献   

14.
Chen X  Duan H  Zhou Z  Liang J  Gnanaraj J 《Nanotechnology》2008,19(36):365306
Free-standing Cu nanorod arrays on Cu foil have been fabricated by a template-assisted method. Cu nanorods were potentiostatically deposited on mechanically polished Cu foil using anodized aluminum oxide templates as the deposition mask. Three electrolyte systems were compared, including two acid copper sulfate based solutions and one alkaline solution. The most uniform nanorods were achieved in the alkaline electrolyte. The weight gain per unit area after electrodeposition has been used as a direct measure of average length of deposited Cu nanorods. It was found that our control over the uniformity in nanorod length across the array is important in reaching the maximized aspect ratio without aggregation. Through controlling the weight change it was possible to control the aspect ratio of nanorods and to avoid aggregation of nanorods. Our capability to fabricate free-standing Cu nanorod arrays of uniform height with maximized aspect ratio on Cu foil is especially important in applying this nanostructured Cu as a current collector in Li ion batteries.  相似文献   

15.
Dense, ordered arrays of <100>-oriented Si nanorods with uniform aspect ratios up to 5:1 and a uniform diameter of 15 nm were fabricated by block copolymer lithography based on the inverse of the traditional cylindrical hole strategy and reactive ion etching. The reported approach combines control over diameter, orientation, and position of the nanorods and compatibility with complementary metal oxide semiconductor (CMOS) technology because no nonvolatile metals generating deep levels in silicon, such as gold or iron, are involved. The Si nanorod arrays exhibit the same degree of order as the block copolymer templates.  相似文献   

16.
Gold nanorods of different aspect ratios are prepared using the growth‐directing surfactant, cetyltrimethylammonium bromide (CTAB), which forms a bilayer on the gold nanorod surface. Toxicological assays of CTAB‐capped nanorod solutions with human colon carcinoma cells (HT‐29) reveal that the apparent cytotoxicity is caused by free CTAB in solution. Overcoating the nanorods with polymers substantially reduces cytotoxicity. The number of nanorods taken up per cell, for the different surface coatings, is quantitated by inductively coupled plasma mass spectrometry on washed cells; the number of nanorods per cell varies from 50 to 2300, depending on the surface chemistry. Serum proteins from the biological media, most likely bovine serum albumin, adsorb to gold nanorods, leading to all nanorod samples bearing the same effective charge, regardless of the initial nanorod surface charge. The results suggest that physiochemical surface properties of nanomaterials change substantially after coming into contact with biological media. Such changes should be taken into consideration when examining the biological properties or environmental impact of nanoparticles.  相似文献   

17.
We report a quantitative analysis of the forces acting on optically trapped single gold nanorods. Individual nanorods with diameters between 8 and 44 nm and aspect ratios between 1.7 and 5.6 were stably trapped in three dimensions using a laser wavelength exceeding their plasmon resonance wavelengths. The interaction between the electromagnetic field of an optical trap and a single gold nanorod correlated with particle polarizability, which is a function of both particle volume and aspect ratio.  相似文献   

18.
Due to the inherent anisotropy of the system, gold nanorods behave differently in comparison to their spherical counterparts. Reactivity of gold nanorods, in presence of cupric ions, was probed in an attempt to understand the chemistry of anisotropic particles. The reaction progresses through a series of intermediates. It can be arrested at any stage to get nanorods of desired dimension and therefore, can be used for their reshaping. The presence or absence of cetyltrimethylammonium bromide (CTAB) on the nanorod surface was found to be determining the site of initiation of the reaction. When a large concentration of CTAB is present in the system, selective etching of the tips of the nanorod occurs and when the nanorods are purified to reduce the amount of CTAB in the solution, the side faces of the nanorod also get reacted. Gold nanorods are converted to particles by further surface reconstructions in a systematic surface specific chemistry.  相似文献   

19.
We study the luminescence quantum yield (QY) of single gold nanorods with different aspect ratios and volumes. Compared to gold nanospheres, we observe an increase of QY by about an order of magnitude for particles with a plasmon resonance >650 nm. The observed trend in QY is further confirmed by controlled reshaping of a single gold nanorod to a spherelike shape. Moreover, we identify two spectral components, one around 500 nm originating from a combination of interband transitions and the transverse plasmon and one coinciding with the longitudinal plasmon band. These components are analyzed by correlating scattering and luminescence spectra of single nanorods and performing polarization sensitive measurements. Our study contributes to the understanding of luminescence from gold nanorods. The enhanced QY we report can benefit applications in biological and soft matter studies.  相似文献   

20.
We have successfully grown template and buffer free ZnO nanorod films via chloride medium by controlling bath temperature in a simple and cost effective electrochemical deposition method. Thin films of ZnO nano-rods were obtained by applying a potential of ?0.75 V by employing Ag/AgCl reference electrode for 4 h of deposition time. The CV measurements were carried out to determine potential required to deposit ZnO nanorod films whereas chronoamperometry studies were carried out to investigate current and time required to deposit ZnO nanorod films. The formation of ZnO nanorod has been confirmed by scanning electron microscopy (SEM) and Raman spectroscopy. Low angle XRD analysis confirms that ZnO nanorod films have preferred orientation along (101) direction with hexagonal wurtzite crystal structure. The SEM micrographs show nice surface morphology with uniform, dense and highly crystalline hexagonal ZnO nanorods formation. Bath temperature has a little influence on the orientation of nanorods but has a great impact on their aspect ratio. Increase in bath temperature show improvement in crystallinity, increase in diameter and uniform distribution of nanorods. Compositional analysis shows that the amount of oxygen is ~49.35 % and that of Zn is ~50.65 %. The optical band gap values were found to be 3.19 and 3.26 eV for ZnO nanorods prepared at bath temperature 70 and 80 °C respectively. These results indicate that by controlling the bath temperature band gap of ZnO nanorods can be tailored. The obtained results suggest that it is possible to synthesize ZnO nanorod films by a simple, cost effective electrodeposition process which can be useful for opto-electronic devices fabrication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号