首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A DNA mismatch repair system exists that repairs mispaired bases formed during DNA replication and genetic recombination. Genetic defects in this mismatch repair system are known to increase the rate of spontaneous mutation in Escherichia coli. Some cases of inherited cancer are associated with inherited defects of mismatch repair genes, showing the importance of the mismatch repair system in maintenance of genetic stability and avoidance of cancer susceptibility. This review focused on what is known about the mechanisms of mismatch repair in human cells and the relationship between defects in mismatch repair and carcinogenesis.  相似文献   

2.
3.
4.
5.
Mismatch repair: mechanisms and relationship to cancer susceptibility   总被引:3,自引:0,他引:3  
DNA mismatch-repair systems exist that repair mispaired bases formed during DNA replication, genetic recombination and as a result of damage to DNA. Some components of these systems are conserved in prokaryotes and eukaryotes. Genetic defects in mismatch-repair genes play an important role in common cancer-susceptibility syndromes and sporadic cancers.  相似文献   

6.
In order to determine the effects of mismatch repair (MMR) deficiencies in sporadic colorectal carcinomas, 45 such cancers were examined using a sensitive method called crypt isolation technique. Loss of heterozygosity (LOH) in the MSH2 or MLH1 gene was more frequently observed in replication error (RER) (+) carcinomas than in RER (-) carcinomas, which implied that loss of one normal allele could partly affect repair capacity. MSH2 gene defects at both alleles were observed in two carcinomas, which showed severe repair deficiencies. Interestingly, unlike the situation observed in the p53 gene, the MSH2 and MLH1 genes did not show complete LOH. Novel crypt isolation-based subpopulation (CISP) analysis demonstrated that at least two distinct carcinoma subpopulations existed in most carcinomas that showed incomplete LOH; one with and one without LOH. In one carcinoma that had germline mutation and somatic incomplete LOH of the MSH2 gene, the mutator phenotype was only observed in populations affected in both alleles. Thus, the MSH2 gene appears to possess the two hits mechanism of tumor suppressor genes. However, unlike the tumor suppressor genes, MMR gene defects lead to a unique mode of colorectal tumorigenesis characterized by intratumoral heterogeneity.  相似文献   

7.
Previous work indicated that extrachromosomal recombination in mammalian cells could be explained by the single-strand annealing (SSA) model. This model predicts that extrachromosomal recombination leads to nonconservative crossover products and that heteroduplex DNA (hDNA) is formed by annealing of complementary single strands. Mismatched bases in hDNA may subsequently be repaired to wild-type or mutant sequences, or they may remain unrepaired and segregate following DNA replication. We describe a system to examine the formation and mismatch repair of hDNA in recombination intermediates. Our results are consistent with extrachromosomal recombination occurring via SSA and producing crossover recombinant products. As predicted by the SSA model, hDNA was present in double-strand break-induced recombination intermediates. By placing either silent or frameshift mutations in the predicted hDNA region, we have shown that mismatches are efficiently repaired prior to DNA replication.  相似文献   

8.
Records for 52,362 lactations over a 10-yr period from 260 dairy farms in North America that used a common commercial software for record keeping were evaluated for potential risk factors for twinning. Records were evaluated for the associations of reproductive disease, parity, production, drug therapy, and the occurrence of subsequent twins. The rate of twinning on these farms steadily increased over the observation period from 1.4% in 1983 to 2.4% in 1993. The rate of twinning also increased as parity of the cow increased, from 1.0% for cows in their first lactation to > 4.1% for cows in their fifth or higher lactation. No association between twinning and season of year was detected. A multivariate logistical regression analysis found that the rate of twinning increased with increases in milk production, incidence of cystic ovarian disease, and the use of common pharmaceuticals, including GnRH, PGF2 alpha, and antibiotics. Results of the regression model also indicated that the single most important reason for the recent increase in the rate of twinning was a concurrent increase in milk production.  相似文献   

9.
Repair of single-base mismatches formed in recombination intermediates in vivo was investigated in Chinese hamster ovary cells. Extrachromosomal recombination was stimulated by double-strand breaks (DSBs) introduced into regions of shared homology in pairs of plasmid substrates heteroallelic at 11 phenotypically silent mutations. Recombination was expected to occur primarily by single-strand annealing, yielding predicted heteroduplex DNA (hDNA) regions with three to nine mismatches. Product spectra were consistent with hDNA only occurring between DSBs. Nicks were predicted on opposite strands flanking hDNA at positions corresponding to original DSB sites. Most products had continuous marker patterns, and observed conversion gradients closely matched predicted gradients for repair initiated at nicks, consistent with an efficient nick-directed, excision-based mismatch repair system. Discontinuous patterns, seen in approximately 10% of products, and deviations from predicted gradients provided evidence for less efficient mismatch-specific repair, including G-A-->G-C specific repair that may reflect processing by a homologue of Escherichia coli MutY. Mismatch repair was > 80% efficient, which is higher than seen previously with covalently closed, artificial hDNA substrates. Products were found in which all mismatches were repaired in a single tract initiated from one or the other nick. We also observed products resulting from two tracts of intermediate length initiated from two nicks.  相似文献   

10.
The in vitro fidelity of Escherichia coli DNA polymerase III holoenzyme (HE) is characterized by an unusual propensity for generating (-1)-frameshift mutations. Here we have examined the capability of HE isolated from both a wild-type and a proofreading-impaired mutD5 strain to polymerize from M13mp2 DNA primer-templates containing a terminal T(template).C mismatch. These substrates contained either an A or a G as the next (5') template base. The assay allows distinction between: (i) direct extension of the terminal C (producing a base substitution), (ii) exonucleolytic removal of the C, or (iii), for the G-containing template, extension after misalignment of the C on the next template G (producing a (-1)-frameshift). On the A-containing substrate, both HEs did not extend the terminal C (<1%); instead, they exonucleolytically removed it (>99%). In contrast, on the G-containing substrate, the MutD5 HE yielded 61% (-1)-frameshifts and 6% base substitutions. The wild-type HE mostly excised the mispaired C from this substrate before extension (98%), but among the 2% mutants, (-1)-frameshifts exceeded base substitutions by 20 to 1. The preference of polymerase III HE for misalignment extension over direct mismatch extension provides a basis for explaining the in vitro (-1)-frameshift specificity of polymerase III HE.  相似文献   

11.
12.
Somatic hypermutation introduces mutations into IgV genes during affinity maturation of the B cell response. Mutations are introduced nonrandomly, and are generally targeted to the complementarity determining regions (CDRs). Subsequent selection against mutations that result in lower affinity or nonfunctional Ig increases the relative number of mutations in the CDRs. Investigation of somatic hypermutation is hampered by the effects of selection. We have avoided this by studying out-of-frame human IgVH4.21 and 251 genes, which, being unused alleles, are unselected. By comparison of the frequency of A, C, G, and T nucleotides at positions -3 to +3 around mutated or unmutated A, C, and G nucleotides, we have identified flanking sequences that most commonly surround mutated bases. Distinct trends in flanking sequences that were unique for each base were observed. Statistically significant trends that were common to both IgVH4.21 and 251 were used to deduce motifs that bias somatic hypermutation. The motifs deduced from this data, with targeted bases in regular type, are AANB, WDCH, and DGHD (where W = A/T, B = C/G/T, D = A/G/T, H = A/C/T, and N = any base). Mutations from C and G in two further groups of out-of-frame human IgVH genes, not used in the deduction of the motifs, occurred significantly within the motifs for C and G. The proposed target sequence for G is within the reverse complement of the target sequence for C, suggesting that the hypermutation mechanism may target only G or C. The mutation in the complementary base would appear on the other strand following replication.  相似文献   

13.
Translationally silent mutations, which are not antigen selected, of human VH6 Ig gene rearrangements isolated from human spleen were analyzed for bias to gain insight into intrinsic features of the mutation process. Sixty-three clones representing 38 VH6DJ rearrangements had an overall mutation frequency of 4.5%, a replacement/silent (R/S) mutation ratio of 2.1 and 167 unique silent mutations. The silent mutations showed bias in: (i) targeting to CDR1 and CDR2, (ii) an increased frequency of mutations of A compared to T nucleotide bases on the coding strand, and (iii) an increased frequency of transitions versus transversions. Bias of C-->G over C-->A, of G-->C over G-->T and of A-->C over A-->T transversions was also present. Hot spots of mutation were observed, some which corresponded to potential sites of stem-loop formation. The results suggest that the somatic mutation process in man may be targeted to the complementarity determining region for some V genes, exhibits specific base substitutions favoring transitions and specific types of transversions, and may be occurring on only one DNA strand.  相似文献   

14.
A genetic analysis of interspecies recombination in Escherichia coli between the linear Hfr DNA from Salmonella typhimurium and the circular recipient chromosome reveals some fundamental aspects of recombination between related DNA sequences. The MutS and MutL mismatch binding proteins edit (prevent) homeologous recombination between these 16% diverged genomes by at least two distinct mechanisms. One is MutH independent and presumably acts by aborting the initiated recombination through the UvrD helicase activity. The RecBCD nuclease might contribute to this editing step, presumably by preventing reiterated initiations of recombination at a given locus. The other editing mechanism is MutH dependent, requires unmethylated GATC sequences, and probably corresponds to an incomplete long-patch mismatch repair process that does not depend on UvrD helicase activity. Insignificant effects of the Dam methylation of parental DNAs suggest that unmethylated GATC sequences involved in the MutH-dependent editing are newly synthesized in the course of recombination. This hypothetical, recombination-associated DNA synthesis involves PriA and RecF functions, which, therefore, determine the extent of MutH effect on interspecies recombination. Sequence divergence of recombining DNAs appears to limit the frequency, length, and stability of early heteroduplex intermediates, which can be stabilized, and the recombinants mature via the initiation of DNA replication.  相似文献   

15.
During the maturation of the immune response, antibody genes are subjected to localized hypermutation. Mutations are not evenly distributed along the V gene; intrinsic hot spots exist that are correlated with primary sequence motifs. Although the mechanism of hypermutation remains unknown, it has been proposed to exhibit DNA strand polarity because purine residues on the coding strand are more frequently targeted for mutation than pyrimidines. However, this polarity may not be an intrinsic property of the hypermutation mechanism but a consequence of evolutionary-selected peculiarities of V gene sequences. Furthermore, the possibility that both strands are hypermutation targets has received little attention. To discriminate between these possibilities, we have analyzed the average frequency of mutations of each of the three bases of all nucleotide triplets by using large databases taken from both V and non-V mutation targets. We also have reassessed the sequence motifs associated with hot spots. We find that even in non-Ig sequences, A mutates more than T, consistent with a strand-dependent component to targeting. However, the mutation biases of triplets and of their inverted complements are correlated, demonstrating that there is a sequence-specific but strand-independent component to mutational targeting. Thus, there are two aspects of the hypermutation process that are sensitive to local DNA sequences, one that is DNA strand-dependent and the other that is not.  相似文献   

16.
17.
The mismatch negativity (MMN) and P3 of auditory event-related potentials were studied during subjectively and objectively (physiologically) defined sleepiness under optimal stimulus conditions for MMN elicitation. The MMN and P3 were elicited by either small or large unattended auditory deviants presented to the left ear. The participant's task was to detect either rare auditory targets presented to the right ear or rare changes in the light flashes. Eleven young adults served as participants in a nighttime experiment. The MMN declined especially at Fz and Cz but not so markedly at the right mastoid as either subjective or objective alertness decreased. The amplitude of P3 also decreased during sleepiness. The attenuation of the MMN was paralleled by a decline in behavioral performance. The results show that the MMN is attenuated by a decrease in alertness even before an actual sleep state is reached.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号