首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iodine-123-beta-CIT has been used as a probe of dopamine transporters in Parkinson's disease patients using SPECT. We studied the test/retest reproducibility of SPECT measures in Parkinson's disease patients and healthy controls obtained after injection of [123I])beta-CIT in part to assess the utility of this tracer for longitudinal evaluation of striatal dopamine transporters as a marker of disease progression. METHODS: Seven Parkinson's disease patients and seven healthy control subjects participated in two [123I]beta-CIT SPECT scans separated by 7-21 days. Subjects were imaged at 24 hr post injection of 360 MBq (9.7 mCi) of [123I]beta-CIT. Two outcome measures were evaluated; 1) the ratio of specific striatal (activity associated with DA transporter binding) to nondisplaceable uptake, also designated V3," and 2) the total specific striatal uptake (%SSU) expressed as a percentage of injected radiotracer dose. For both measures, test/retest variability was calculated as the absolute difference of test minus retest divided by the mean of test/retest and expressed as a percent. In addition, the reproducibility of left and right striatal asymmetry and putamen:caudate ratios were determined. RESULTS: The two outcome measures demonstrated excellent test/retest reproducibility for both the Parkinson's disease and healthy subject groups with variability of striatal V3" = 16.8 +/- 13.3% and percent striatal uptake = 6.8 +/- 3.4% for Parkinson's disease patients and V3" = 12.8 +/- 8.9% and %SSU = 7.0 +/- 3.9% for control subjects. There were no statistically significant differences in test/retest variability between control subjects and Parkinson's disease patients for either outcome measure. The reproducibility of left/right asymmetry indices and putamen-to-caudate ratios showed no patient versus control subject differences. The asymmetry index had greater test/retest variability than the other outcome measures. CONCLUSION: These data suggest that SPECT imaging performed at 24 hr postinjection of [123I]beta-CIT permits calculation of reliable and reproducible measures of dopamine transporters in both Parkinson's disease patients and control subjects and supports the feasibility of using [123I]beta-CIT in the evaluation of disease progression in Parkinson's disease.  相似文献   

2.
Functional imaging of the presynaptic dopaminergic activity using single-photon emission tomography (SPET) and iodine-123 labelled 2-beta-carboxymethoxy-3-beta-(4-iodophenyl)tropane ([123I]beta-CIT) is important for the assessment of disease severity and progression in patients with Parkinson's disease (PD). However, its capability to discriminate between different extrapyramidal disorders has not yet been assessed. The aim of this study was to evaluate the possibility of differentiating patients with PD and with progressive supranuclear palsy (PSP) by means of this method. The distribution of [123I]beta-CIT in the basal ganglia was assessed in six normal subjects, 13 petients with PD and five patients with PSP in whom the disease was mild. SPET images were obtained 24+/-2 h after i.v. injection of the tracer using a brain-dedicated system (CERASPECT). MR and SPET images were co-registered in four normal subjects and used to define a standard set of 16 circular regions of interest (ROIs) on the slice showing the highest striatal activity. The basal ganglia ROIs corresponded to (1) the head of caudate, (2) a region of transition between the head of caudate and the anterior putamen, (3) the anterior putamen and (4) the posterior putamen. A ratio of specific to non-displaceable striatal uptake was calculated normalising the activity of the basal ganglia ROIs to that of the occipital cortex (V3"). ANOVA revealed a global reduction of V3" in all ROIs of PD and PSP patients compared with normal controls (P<0. 0001). A Mann-Whitney U test showed that the difference between PD and PSP patients was statistically significant for the caudate region only (Z value: 2.6; P<0.01). By subtracting V3" caudate values from those of the putamen, differentiation from PSP was possible in 10/13 PD patients. In conclusion, analysis of [123I]beta-CIT distribution in discrete striatal areas provides information on the relative caudate-putamen damage, with different values being obtained in patients clinically diagnosed as having either PD or PSP.  相似文献   

3.
Resting and postural tremor may occur in essential tremor (ET) and Parkinson's disease (PD). The aim of the present study was to investigate the cocaine derivative [123I]beta-CIT, which labels striatal dopamine transporters, and SPECT in differentiating these diseases. METHODS: 30 healthy volunteers, 32 patients with ET and 29 patients with idiopathic PD of Hoehn/Yahr stage I were investigated. Specific over nondisplaceable binding ratios (target/cerebellum-1) were calculated for the striatum, the caudate nucleus and the putamen separately as well as a ratio putamen/caudate and the percent deviation of each patient's ratio from age-expected control values. RESULTS: Striatal [123I]beta-CIT binding ratios in ET were within normal ranges and showed only a discrete elevation to age-expected control values (+14.6%). In PD significantly reduced specific binding was evident not only contralaterally to the clinically affected side (putamen: -62%, caudate nucleus: -35%), but also ipsilaterally (putamen: -45%, caudate nucleus: -22%). All investigated parameters differed significantly between PD and controls and ET respectively. CONCLUSION: Imaging striatal dopamine transporters with [123I]beta-CIT and SPECT could clearly distinguish between ET and PD in an early stage of the disease. Findings do not suggest a subclinical involvement of dopaminergic nigrostriatal neurons in ET.  相似文献   

4.
Iodine-123-beta-carbomethoxy-3 beta-(4-iodophenyltropane) (CIT) has been used as a probe of dopamine transporters in Parkinson's disease patients using SPECT. This tracer has a protracted period of striatal uptake enabling imaging 14-24 hr postinjection for stable quantitative measures of dopamine transporters, and it binds with nanomolar affinity to the serotonin transporter. Iodine-123 fluoropropyl (FP)CIT is an analog of [123I]-beta-CIT and has been shown to achieve peak tracer uptake in the brain within hours postinjection and to provide greater selectivity for the dopamine transporter. The purpose of the present study was to compare [123I]-beta-CIT with [123I]-FPCIT in a within-subject design. METHODS: Six Parkinson's disease patients and five healthy control subjects participated in one [123I]-beta-CIT and one [123I]-FPCIT SPECT scan separated by 7-21 days. Controls were imaged at 24 hr postinjection 222 MBq (6 mCi) [123I]-beta-CIT and serially from 1-6 hr postinjection 333 MBq (9 mCi) [123I]-FPCIT. Two imaging outcome measures were evaluated: (a) the ratio of specific striatal activity to nondisplaceable uptake, also designated V"3, at each imaging time point; and (b) the rate of striatal washout of radiotracer expressed as a percent reduction per hr for [123I]-FPCIT. In addition, venous plasma was obtained from the five control subjects after the [123I]-FPCIT injection for analysis of radiometabolites. RESULTS: Both [123I]-FPCIT and [123I]-beta-CIT demonstrated decreased striatal uptake in Parkinson's disease patients compared with the controls with a mean of V"3=3.5 and 6.7 for [123I]-beta-CIT (Parkinson's disease and controls, respectively) and a mean of V"3=1.34 and 3.70 for [123I]-FPCIT (Parkinson's disease and controls, respectively). For [123I]-beta-CIT, the mean Parkinson's disease values represented 52% of the control uptake, while the mean [123I]-FPCIT value for Parkinson's disease patients was 37% of the control values. Analysis of [123I]-FPCIT time-activity curves for specific striatal counts showed washout rates of 8.2%/hr for Parkinson's disease and 4.9%/hr for controls. CONCLUSION: These data suggest that SPECT imaging with [123I]-FPCIT visually demonstrates reductions in striatal uptake similar to [123I]-beta-CIT. iodine-123-FPCIT washed out from striatal tissue 15-20 times faster than [123I]-beta-CIT, and estimates of dopamine transporter loss in Parkinson's disease patients were higher for [123I]-FPCIT than for [123I]-beta-CIT. This was most likely due to the faster rate of striatal washout and establishment of transient equilibrium binding conditions at the dopamine transporter, which the modeling theory suggests produces an overestimation of dopamine transporter density with relatively greater overestimates in healthy control subjects by [123I]-FPCIT.  相似文献   

5.
Fluorinated N-3-fluoropropyl-2-beta-carboxymethoxy-3-beta-(4-iodophenyl) nortropane (FPCIT) has been synthesized as a dopamine transporter ligand for PET studies. We evaluated the regional brain uptake and the plasma metabolism of [18F]-FPCIT. METHODS: PET studies were conducted on 7 normal subjects and on 10 patients with Parkinson's disease. After the [18F]-FPCIT injection (4.4+/-1.8 mCi), dynamic scans were acquired over 100 min. Plasma metabolite analysis was performed using high-performance liquid chromatography (HPLC). RESULTS: Plasma HPLC revealed two peaks corresponding to unmetabolized [18F]-FPCIT and a polar metabolite. The fraction of the parent compound decreased rapidly to 25% at 25 min. Fluorine-18-FPCIT showed a striatum-to-occipital ratio (SOR) of 3.5 at 90 min postinjection. The ratio of striatal-to-occipital distribution volume (DVR) was calculated directly by using a mean tissue-to-plasma efflux constant for occipital cortex obtained in 10 subjects (ki=0.037 min(-1)). DVR measures determined with and without plasma input function were correlated (r=0.98, p < 0.0001). In normal subjects, a significant age-related decline of DVR was observed both for caudate and putamen, corresponding to a 7.7% and 6.4% decline per decade, respectively (r > 0.85, p < 0.01). Both DVR and SOR correctly classified early-stage Parkinson's disease patients with comparable accuracy (p < 0.0001). Age-corrected DVR values correlated negatively with the Uniform Parkinson's Disease Rating Scale composite motor ratings (r=0.66, p < 0.05). CONCLUSION: The tracer characteristics are compatible with a high-affinity, reversible ligand. FPCIT/PET demonstrated age-related decline in dopamine transporter binding in normal subjects as well as significant reductions in patients with idiopathic Parkinson's disease, which correlates with the disease severity.  相似文献   

6.
beta-CIT (2 beta-carbomethoxy-3 beta-(4-iodophenyl)tropane) is a cocaine analogue with a high affinity for the dopamine transporter. [11C] beta-CIT was prepared by N-methylation of nor-beta-CIT with [11C]methyl iodide. The total radiochemical yield of [11C] beta-CIT was 40-50% with an overall synthesis time of 35-40 min. The radiochemical purity was > 99% and the specific radioactivity at the time of injection was about 1000 Ci/mmol (37 GBq/mumol). Autoradiographic examination of [11C] beta-CIT binding in human brains post-mortem demonstrated a high level of specific binding in the striatum. PET examination of [11C] beta-CIT in a Cynomolgus monkey showed a marked accumulation of radioactivity in the striatum. The ratio of radioactivity in the striatum-to-cerebellum approached 5 after 87 min. In a displacement experiment, radioactivity in the striatum but not in the cerebellum, was markedly reduced after injection of unlabelled cocaine. [11C] beta-CIT has a potential as ligand for PET examination of cocaine effects in man.  相似文献   

7.
Assess the feasibility of proton MR spectroscopic imaging (1H-MRSI) of the striatum (putamen and caudate nucleus) in patients with Parkinson's disease and evaluate striatal neuronal density. Proton MRSI of the striatum and thalamus with 2 cc spatial resolution was performed in 10 patients with Parkinson's disease, 1 patient with atypical parkinsonism, and 13 control subjects. Single voxel proton MR spectra with signals from choline metabolites (Cho), creatine metabolites (Cr), and the putative neuronal marker, N-acetyl-aspartate (NAA), were obtained from the putamen and thalamus, but not the caudate nucleus, of patients with parkinsonism and control subjects. Metabolite rations in controls and patients were: in putamen NAA/Cho 1.70 +/- 0.25 vrs 1.74 +/- 0.32, NAA/Cr 2.80 +/- 0.79 vrs 2.36 +/- 0.42, Cho/Cr 1.63 +/- 0.25 vrs 1.39 +/- 0.3; in thalamus, NAA/Cho 1.78 +/- 0.15 vrs 1.62 +/- 0.22, NAA/Cr 2.78 +/- 0.34 vrs 2.64 +/- 0.41, Cho/Cr 1.57 +/- 0.25 vrs 1.65 +/- 0.28. There were no statistically significant differences between patients and controls. The putaminal NAA/Cho ratio of the single subject with atypical parkinsonism was lower than that of 9 of the 10 patients with classic Parkinson's disease and 11 of the 13 control subjects. Likewise, the putaminal NAA/Cr ratio in the single subject with atypical parkinsonism was lower than that of 7of the patients with guided selection of spectra from very small brain volumes, is a technique that can be used to evaluate neuronal density in individual subcortical gray nuclei in the brains of patients with parkinsonism. Using this technique, we have shown that Parkinson's disease produces no change in relative levels of the neuronal marker, NAA, in the putamen.  相似文献   

8.
Dopamine (DA) has been considered to play an important role in the development of ischemic neuronal injury in the caudate putamen (CPu). The goal of this study was to examine the change in the dopamine transporter (DAT) after ischemic insult in CPu. METHODS: Male Mongolian gerbils (n = 10) were exposed to 10-min forebrain ischemia. Animals were decapitated 24 hr (n = 5) and 96 hr (n = 5) after ischemia. The change in the amount of DAT binding sites in CPu was evaluated by in vitro autoradiography with [125I]-beta-CIT (3 beta-(4-iodophenyl)tropan-2 beta-carboxylic acid methyl ester). In addition, the expression of DAT mRNA in CPu and the substantia nigra pars compacta (SNC) was examined. Results: Iodine-125-beta-CIT specific binding was significantly increased in dorsolateral CPu with ischemic damage both 24 hr and 96 hr after ischemia, with greater increase at 96 hr. DAT mRNA in SNC was also significantly increased 96 hr after ischemia, which corresponded with the increase of [125I] beta-CIT binding. However, DAT mRNA in SNC was decreased 24 hr after ischemia. In the ischemic lesion in CPu, no expression of DAT mRNA could be detected both 24 hr and 96 hr after ischemia. CONCLUSION: The change in DAT after ischemic insult is clarified with [125I] beta-CIT. This increase of [125I] beta-CIT binding does not come from de novo expression of DAT in glial cells in the damaged area in CPu. This increase of beta-CIT binding reflects increase of DAT synthesis in DA neurons in SNC (96 hr) or other factors such as the impairment of the degradation of DAT in the damaged area in CPu.  相似文献   

9.
We performed PET on four patients with chronic industrial Mn intoxication; presynaptic and postsynaptic dopaminergic function were measured with [18F]6-fluoro-L-dopa (6FD) and [11C]raclopride (RAC). All patients had a rigid-akinetic syndrome; they had no sustained benefit from L-dopa. Influx constants (Ki) of 6FD were normal in the caudate and putamen. RAC binding was mildly reduced in the caudate and normal in the putamen. We conclude that nigrostriatal dopaminergic dysfunction is not responsible for the parkinsonism caused by chronic Mn intoxication. The pathology is likely to be downstream of the dopaminergic projection.  相似文献   

10.
Iodine-123-2 beta-carbomethoxy-3 beta-(4-iodophenyl)tropane (beta-CIT) is a useful SPECT tracer for imaging the dopamine transporter. Its slow kinetics, however, necessitate imaging on the day after the injection. Two N-omega-fluoroalkyl analogs of beta-CIT, the fluoropropyl and fluoroethyl compounds (beta-CIT-FP and beta-CIT-FE, respectively), characterized by faster kinetics in baboons, were tested in humans as potential tracers for the dopamine transporter. Four healthy volunteers were injected with [123I]-beta-CIT-FP and another four were injected with [123I]beta-CIT-FE. SPECT data were acquired for 1149 +/- 590 min and 240 +/- 30 min, respectively. Both tracers demonstrated high brain uptake (6.37% +/- 0.37% and 7.8% +/- 1.5% of the injected dose, respectively). Activity concentrated with time in the striatal area, reaching a peak within 30 min, with little or no washout for [123I]beta-CIT-FP and a faster washout for [123I]beta-CIT-FE (14.7% +/- 6.9%). Occipital and midbrain activity showed similar patterns, displaying a peak within 15 min and rapid washout, followed by stable levels at approximately 100 min for both tracers. The ratio of peak specific striatal-to-peak specific midbrain activity was 9.1 +/- 1.8 for [123I]beta-CIT-FP and 7.7 +/- 0.7 for [123I]beta-CIT-FE, showing high in vivo selectivity for the dopamine transporter. These preliminary results suggest that both compounds could be used as SPECT (labeled with 123I) or PET (labeled with 18F) radiotracers to image the dopamine transporters in the living human brain.  相似文献   

11.
Methamphetamine and methcathinone are psychostimulant drugs with high potential for abuse. In animals, methamphetamine and related drugs are known to damage brain dopamine (DA) neurons, and this damage has recently been shown to be detectable in living nonhuman primates by means of positron emission tomography (PET) with [11C]WIN-35,428, a DA transporter (DAT) ligand. The present studies determined whether living humans with a history of methamphetamine or methcathinone abuse showed evidence of lasting decrements in brain DAT density. PET studies were performed in 10 control subjects, six abstinent methamphetamine users, four abstinent methcathinone users, and three patients with Parkinson's disease (PD). On average, subjects had abstained from amphetamine use for approximately 3 years. Before PET studies, all subjects underwent urine and blood toxicology screens to rule out recent drug use. Compared with controls, abstinent methamphetamine and methcathinone users had significant decreases in DAT density in the caudate nucleus (-23 and -24%, respectively) and putamen (-25 and -16%, respectively). Larger decreases in DAT density were evident in patients with PD (47 and 68% in caudate and putamen, respectively). Neither methamphetamine nor methcathinone users showed clinical signs of parkinsonism. Persistent reductions of DAT density in methamphetamine and methcathinone users are suggestive of loss of DAT or loss of DA terminals and raise the possibility that as these individuals age, they may be at increased risk for the development of parkinsonism or neuropsychiatric conditions in which brain DA neurons have been implicated.  相似文献   

12.
BACKGROUND: Prior research has suggested reductions in the density of serotonin transporter (SERT) binding sites in blood platelets and post-mortem brain tissue of depressed patients. We sought to determine whether patients with unipolar major depression have diminished SERT availability as assessed by both brainstem [123I] beta-CIT SPECT and platelet [3H]paroxetine binding. METHODS: Drug-free depressed and healthy subjects were injected with 211 +/- 22 MBq [123I] beta-CIT and imaged 24 +/- 2 h later under equilibrium conditions. A ratio of specific to nonspecific brain uptake (V3" = (brainstem-occipital)/occipital), a measure proportional to the binding potential (Bmax/Kd), was used for all comparisons. RESULTS: Results showed a statistically significant reduction in brainstem V3" values in depressed as compared to healthy subjects (3.1 +/- .9 vs. 3.8 +/- .8, p = .02). Platelet [3H]paroxetine binding was not altered (Bmax = 2389 +/- 484 vs. 2415 +/- 538 fmol/mg protein, p = .91) and was not significantly correlated with brainstem [123I] beta-CIT binding (r = -0.14, p = .48). CONCLUSIONS: These data are the first to suggest reductions in the density of brain SERT binding sites in living depressed patients. These findings provide further support for a preeminent role for alterations in serotonergic neurons in the pathophysiology of depression.  相似文献   

13.
Whole body insulin resistance characterizes patients with NIDDM, but it is not known whether insulin also has impaired ability to stimulate myocardial glucose uptake (MGU) in these patients. This study was designed to evaluate MGU as measured by 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) and positron emission tomography (PET) in patients with NIDDM and stable coronary artery disease (CAD) under standardized metabolic conditions. Eight patients with NIDDM, 11 nondiabetic patients with CAD, and 9 healthy control subjects were enrolled in the study. MGU was quantitated in the normal myocardial regions with [18F]FDG and PET and the whole body glucose disposal by glucose-insulin clamp technique (serum insulin, -430 pmol/l). Plasma glucose and serum insulin concentrations were comparable in all groups during PET studies. The whole body glucose uptake was 45% lower in NIDDM patients (22 +/- 9 micromol x min(-1) X kg(-1) body wt [mean +/- SD]), compared with healthy control subjects (40 +/- 17 micromol x min(-1) x kg(-1) body wt, P < 0.05). In CAD patients, whole body glucose uptake was 30 +/- 9 micromol x min(-1) x kg(-1) body wt (NS between the other groups). MGU was similar in the normal segments in all three groups (69 +/- 28 micromol x min(-1) x 100 g(-1) in NIDDM patients, 72 +/- 17 micromol x min(-1) x 100 g(-1) in CAD patients, and 76 +/- 10 micromol x min(-1) x 100 g(-1) in healthy control subjects, NS). No correlation was found between whole body glucose uptake and MGU. As studied by [18F]FDG PET under stable normoglycemic hyperinsulinemic conditions, MGU is not reduced in patients with NIDDM and CAD in spite of peripheral insulin resistance. These findings suggest that there is no significant defect in MGU in patients with NIDDM.  相似文献   

14.
Striatal dopamine transporter function and dopamine D2 receptor status were evaluated in 15 patients with early untreated Parkinson's disease using single photon emission tomography (SPECT) with 123I-Iodo-2beta-carboxymethoxy-3beta-(4-idiophenyl)tropane (beta-CIT) and 123I-Iodobenzamide (IBZM) as pre- and postsynaptic ligands. Symptoms were unilateral in five patients and bilateral but asymmetric in 10 patients. Patients with bilateral symptoms had significantly lower 18-hour striatal/cerebellar beta-CIT binding ratios (3.59 +/- 0.79) than hemiparkinsonian patients (5.76 +/- 1.48, p < 0.05) reflecting more advanced disease in this subgroup. Patients with bilateral parkinsonism were also found to have a significant side-to-side difference in striatal beta-CIT binding with more marked reduction contralateral to the presenting limb (18-hour striatal/cerebellar ratio: 4.13 +/- 0.78 [ipsilateral] versus 3.59 +/- 0.79 [contralateral], p < 0.05). Dopamine D2 receptor binding as measured by IBZM was significantly elevated contralateral to the affected side in hemiparkinsonian patients (striatal/cerebellar ratio: 2.42 +/- 0.90 [contralateral] versus 2.19 +/- 0.80 [ipsilateral], p < 0.05). This asymmetric upregulation was absent in the patients with bilateral parkinsonism (striatal/cerebellar ratio: 1.85 +/- 0.43 [contralateral to more severely affected side] versus 1.83 +/- 0.34 [ipsilateral], p > 0.05). Our data suggest that postsynaptic dopamine receptor upregulation contralateral to the presenting side occurs in untreated unilateral PD and disappears in untreated bilateral (asymmetric) PD despite a greater loss of dopamine transporter function. Combined beta-CIT and IBZM SPECT studies may be helpful to monitor the progression of nigrostriatal dysfunction in early PD.  相似文献   

15.
We investigated dopamine D1 receptors in the putamen and caudate nucleus with positron emission tomography in six patients with narcolepsy and five healthy controls using [11C]NNC 756 as ligand. The caudate-to-cerebellum and putamen-to-cerebellum ratios of [11C]NNC 756 were within normal limits in patients with narcolepsy. No evidence of increased D1 receptor binding in narcolepsy was found.  相似文献   

16.
The effect of peripheral catechol-O-methyltransferase (COMT) inhibition with entacapone on striatal uptake of 6-[18F]fluoro-L-dopa (FDOPA) was studied with PET both without and with entacapone in fifteen advanced parkinsonian patients and six healthy controls. Entacapone significantly enhanced the fraction of unmetabolized FDOPA in plasma from 16% to about 50% at 80 minutes after FDOPA injection in all subjects. The striatal to occipital ratios and the striatal FDOPA uptake, expressed as a modified decarboxylation coefficient (k3R0), was significantly increased in healthy controls, whereas in parkinsonian patients the increase was significant only in the caudate. On the other hand, the influx constant (Ki) decreased significantly in the caudate and putamen in parkinsonian patients; in healthy controls the Ki remained virtually unchanged. Effective peripheral COMT inhibition markedly increased the fraction of FDOPA in plasma and thus its availability in the brain for decarboxylation both in patients and control subjects. However, the change in striatal FDOPA uptake was modest in the advanced parkinsonian patients as compared to that in control subjects, because of the advanced disease, decreased storage capacity, or both.  相似文献   

17.
Local cerebral serotonin synthesis capacity was measured with alpha-[C-11]methyl-L-tryptophan ([C-11]AMT) in normal adult human brain (n = 10; five males, five females; age range, 18-38 years, mean 28.3 years) by using positron emission tomography (PET). [C-11]AMT is an analog of tryptophan, the precursor for serotonin synthesis, and is converted to alpha-[C-11]methyl-serotonin ([C-11]AM-5HT), which is trapped in serotonergic neurons because [C-11]AM-5HT is not degraded by monoamine oxidase. Kinetic analysis of [C-11] activity in brain after injection of [C-11]AMT confirmed the presence of a compartment with unidirectional uptake that represented approximately 40% of the activity in the brain at 50 min after tracer administration. The undirectional rate constant K, which represents the uptake of [C-11]AMT from the plasma to brain tissue followed by the synthesis and physiologic trapping of [C-11]AM-5HT, was calculated using the Patlak graphic approach on a pixel-by-pixel basis, thus creating parametric images. The rank order of K values for different brain regions corresponded well to the regional concentrations of serotonin in human brain (P < .0001). High serotonin synthesis capacity values were measured in putamen, caudate, thalamus, and hippocampus. Among cortical regions, the highest values were measured in the rectal gyrus of the inferior frontal lobe, followed by transverse temporal gyrus; anterior and posterior cingulate gyrus; middle, superior, and inferior temporal gyri; parietal cortex; occipital cortex, in descending order. Values in women were 10-20% higher (P < .05, MANOVA) throughout the brain than those measured in men. Differences in the serotonin synthesis capacity between men and women measured in this study may reflect gender differences of importance to both normal and pathologic behavior. This study demonstrates the suitability of [C-11]AMT as a tracer for PET scanning of serotonin synthesis capacity in human brain and provides normal adult values for future comparison with patient groups.  相似文献   

18.
The purpose of this study was to investigate whether uptake of L-methyl-[11C]-methionine in a tumor is related to the survival of patients with squamous cell cancer of the head and neck. METHODS: Thirty-nine patients (median age 64 yr) with newly diagnosed squamous cell carcinoma of the head and neck entered a PET study with [11C]-methionine before therapy. Tumor [11C]-methionine uptake was measured as standardized uptake values (SUVs), and the PET results were compared with the clinical follow-up data of the patients. RESULTS: All except one of the malignant lesions within the field of view were visible by [11C]-methionine PET. The median tumor SUV was 9.0 (range 4.0-18.8). The median follow-up time for patients still alive is currently 44 mo (range 14-66 mo). No difference in survival was found between patients with tumor SUV equal to or larger than the median and those with tumor SUV smaller than the median. CONCLUSION: Carbon-11-methionine PET imaging is effective in squamous cell head and neck cancer. The amount of [11C]-methionine uptake does not predict the clinical outcome.  相似文献   

19.
OBJECTIVE: Regional presynaptic dopaminergic function and its regulation by dopamine agonists in different stages of PD can be measured by L-[11C]dopa and PET. In the current investigation, we studied the effects of therapeutic apomorphine on L-[11C]dopa uptake in patients with early and advanced PD. BACKGROUND: With disease progression and chronic dopamine agonist treatment, motor response complications supervene in a majority of PD patients. It is assumed that both presynaptic and postsynaptic changes in the dopaminergic system act to modify dopaminergic efficacy. METHODS: Patients with early and advanced stages of PD were included in the study. All patients were investigated twice with PET and L-[11C]dopa drug free and during a subsequent standardized therapeutic apomorphine infusion. RESULTS: Subregional analysis of the striatum showed differences in the effects of apomorphine infusion on the L-[11C]dopa influx rate in the two patient categories. In patients with early and uncomplicated PD, apomorphine infusion decreased the L-[11C]dopa influx rate. This decrease was most pronounced in the dorsal part of the putamen. In advanced PD patients, apomorphine did not affect the striatal L-[11C]dopa influx rate. CONCLUSIONS: We suggest that in mild and stable PD an upregulated presynaptic inhibitory feedback regulation, particularly in the dorsal putamen, acts to maintain congruity within the dopaminergic system in response to antiparkinsonian medication. However, this inhibitory feedback regulation is diminished with the progression of nigrostriatal degeneration and chronic dopamine agonist treatment.  相似文献   

20.
Professor Matthew Stewart: asbestosis research 1929-1934   总被引:1,自引:0,他引:1  
The chronic continuous infusion of cocaine produces partial behavioral tolerance to cocaine and tolerance to the inhibition of dopamine uptake by cocaine, without changing dopamine transporter binding. In order to examine more closely the dopaminergic contribution to this effect, the selective dopamine uptake inhibitor GBR 12,909 (30 mg/kg/day), cocaine (50 mg/kg/day), or vehicle, were continuously infused via osmotic minipump, and their effects on the dopamine transporter examined. Drug and vehicle pumps were implanted into male Sprague-Dawley rats and removed after seven days. [3H]WIN 35,428 binding and [3H]dopamine uptake were measured in caudate putamen and nucleus accumbens at varying intervals after pump removal. The Bmax for [3H]WIN 35,428 binding was decreased by approximately 75% in the caudate putamen and by 40% in the nucleus accumbens of GBR 12,909-treated rats both 1 and 4 days after pump removal, and was still significantly decreased after 10 days, but had returned to normal by 20 days post-treatment. In contrast, cocaine did not significantly alter [3H]WIN 35,428 binding. GBR 12,909 produced both tolerance to the inhibition of [3H]dopamine uptake by cocaine, and a decrease in total uptake of dopamine, in the caudate putamen, with no change in the nucleus accumbens. The persistent reduction of [3H]WIN 35,428 binding following continuous GBR 12,909 does not appear to result from residual drug binding. These findings suggest that GBR 12,909 and cocaine may bind to and regulate the dopamine transporter in different ways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号