首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interfacial reaction between Y2O3-partially-stabilized ZrO2 and α-Al2O3 was studied. It was noted that α-Al2O3 forms inside the periphery of the β-Al2O3 grains; its formation suggests the loss of Na2O from the p-Al2O3, either by evaporation or by dissolution in the ZrO2 matrix. The presence of Na2ZrO3 is suspected.  相似文献   

2.
A technique for growing α-Al2O3 crystals is described in which Na2O·11Al2O3 is dissolved in a liquid of composition Na2O·4TiO2·3Al2O3. Alpha Al2O3 is precipitated as Na2O evaporates from the system; Na2O·11Al2O3 serves as a source of Al2O3, and Na2O in the liquid. The content of solids in the mixture is always such that it does not melt completely. The size of the α-Al2O3 crystals grown is related to the Na2O content of the composition. Crystals as large as 4000 by 3000 μm in the α-axis direction and 500 μm in the c -axis direction have been grown.  相似文献   

3.
The temperature dependence of bending strength, fracture toughness, and Young's modulus of composite materials fabricated in the ZrO2 (Y2O3)-Al2O3 system were examined. The addition of A1203 enhanced the high-temperature strength. Isostatically hot-pressed, 60 wt% ZrO2 (2 mol% Y2O3)/40 wt% Al2O3 exhibited an extremely high strength, 1000 MPa, at 1000°C.  相似文献   

4.
Rapidly solidified ZrO2 (Y2O3)–Al2O3 powders were prepared by melting fine-particle aggregates in a high-enthalpy plasma flame and then rapidly quenching them in cold water or on a copper chill plate. To ensure complete melting and homogenization of all the particles before quenching, the water-quenching treatment was often repeated two or even three times. The resulting melt-quenched powders and splats displayed a variety of metastable structures, depending on composition and cooling rate. ZrO2-rich material developed an extended solid solution phase, whereas eutectic material formed a nanofibrous or amorphous structure. Under high cooling rate conditions, the ZrO2-rich material developed a nanocomposite structure ( t -ZrO2+α-Al2O) directly by melt-quenching, whereas, more typically, such a structure was developed only after postannealing of the as-quenched metastable material.  相似文献   

5.
Gradient, porous alumina ceramics were prepared with the characteristics of microsized tabular α-Al2O3 grains grown on a surface with a fine interlocking feature. The samples were formed by spin-coating diphasic aluminosilicate sol on porous alumina substrates. The sol consisted of nano-sized pseudo-boehmite (AlOOH) and hydrolyzed tetraethyl orthosilicate [Si(OC2H5)4]. After drying and sintering at 1150°–1450°C, the crystallographic and chemical properties of the porous structures were investigated by analytical electron microscopy. The results show that the formation of tabular α-Al2O3 grains is controlled by the dissolution of fine Al2O3 in the diphasic material at the interface. The nucleation and growth of tabular α-Al2O3 grains proceeds heterogeneously at the Al2O3/glass interface by ripening nano-sized Al2O3 particles.  相似文献   

6.
In the system ZrO2-Al2O3, cubic ZrO2 solid solutions containing up to 40 mol% Al2O3 crystallize at low temperatures from amorphous materials prepared by the simultaneous hydrolysis of zirconium and aluminum alkoxides. The values of the lattice parameter, a, increase linearly from 0.5095 to 0.5129 nm with increasing Al2O3 content. At higher temperatures, the solid solutions transform into tetragonal ZrO2 and α-Al2O3. Pure ZrO2 crystallizes in the tetragonal form at 415° to 440°C.  相似文献   

7.
By using α-Si3N4 and β-Si3N4 starting powders with similar particle size and distribution, the effect of α-β (β') phase transition on densification and microstructure is investigated during the liquid-phase sintering of 82Si3N4·9Al2O3·9Y2O3 (wt%) and 80Si3N4·13Al2O3·5AIN·5AIN·2Y2O3. When α-Si3N4 powder is used, the grains become elongated, apparently hindering the densification process. Hence, the phase transition does not enhance the densification.  相似文献   

8.
The effect of Y2O3 content on the flexure strength of melt-grown Al2O3–ZrO2 eutectics was studied in a temperature range of 25°–1427°C. The processing conditions were carefully controlled to obtain a constant microstructure independent of Y2O3 content. The rod microstructure was made up of alternating bands of fine and coarse dispersions of irregular ZrO2 platelets oriented along the growth axis and embedded in the continuous Al2O3 matrix. The highest flexure strength at ambient temperature was found in the material with 3 mol% Y2O3 in relation to ZrO2(Y2O3). Higher Y2O3 content did not substantially modify the mechanical response; however, materials with 0.5 mol% presented a significant degradation in the flexure strength because of the presence of large defects. They were nucleated at the Al2O3–ZrO2 interface during the martensitic transformation of ZrO2 on cooling and propagated into the Al2O3 matrix driven by the tensile residual stresses generated by the transformation. The material with 3 mol% Y2O3 retained 80% of the flexure strength at 1427°C, whereas the mechanical properties of the eutectic with 0.5 mol% Y2O3 dropped rapidly with temperature as a result of extensive microcracking.  相似文献   

9.
The microstructures of ZrO2–20 wt% Y2O3 thermal barrier coatings formed by electron beam-physical vapor deposition on a Nibase superalloy have been studied by transmission electron microscopy. The coating systems consist of several layers, including a superalloy substrate, a bond coat, an Al2O3 scale, and the PVD coating. The overall ceramic thermal barrier coatings were characterized, with special emphasis being given to the α-Al2O3 scale which forms between the bond coat and the ZrO2Y2O3 coating. The oxide scale exhibited various morphologies in different coating systems; the majority of the porosity formed in this region for all coatings.  相似文献   

10.
The effect of Cr and Fe in solid solution in γ-Al2O3 on its rate of conversion to α-Al2O3 at 1100°C was studied by X-ray diffraction. The δ form of Al2O3 was the principal intermediate phase produced from both pure γ-Al2O3 and that containing Fe3+ in solid solution, although addition of Fe greatly reduced crystallinity. Reflectance spectra and magnetic susceptibilities showed that Cr exists as Cr6+ in γ-Al2O3 and as Cr3+ in α-Al2O3, with θ-Al2O3 as the intermediate phase. The intermediates formed rapidly, and the rates of their conversion to α-Al2O3 were increased by 2 and 5 wt% additions of Fe and decreased by 2 and 4 wt% additions of Cr. An approximately linear relation observed between α-Al2O3 formation and decrease in specific surface area was only slightly affected by the added ions. This relation can be explained by a mechanism in which the sintering of δ- or θ-Al2O3, within the aggregates of their crystallites, is closely coupled with conversion of cubic to hexagonal close packing of O2- ions by synchro-shear.  相似文献   

11.
An epitaxial β-alumina crystal growth method was used to modify α-AI2O3 platelet surfaces before inclusion as a reinforcing phase in partially stabilized zirconia (3Y-TZP). The as-grown surface phase was Na-β"-AI2O3. This was converted to Ca-β"-AI2O3 by ion exchange, as the latter is more temperature-stable at composite sintering temperatures. The conditions of formation, thermal stability, and chemical compatibility of these interfacial phases were examined. α-AI2O3 platelets with Ca-β"-AI2O3 film were incorporated into 3Y-TZP. The β"-AI2O3/ZrO2 interface was found to promote platelet debonding and pullout, thus enhancing the α-AI2O3 platelet/crack interactions during the fracture process.  相似文献   

12.
The effect of monovalent cation addition on the γ-Al2O3-to-α-Al2O3 phase transition was investigated by differential thermal analysis, powder X-ray diffractometry, and specific-surface-area measurements. The cations Li+, Na+, Ag+, K+, Rb+, and Cs+ were added by an impregnation method, using the appropriate nitrate solution. β-Al2O3 was the crystalline aluminate phase that formed by reaction between these additives and Al2O3 in the vicinity of the γ-to-α-Al2O3 transition temperature, with the exception of Li+. The transition temperature increased as the ionic radii of the additive increased. The change in specific surface area of these samples after heat treatment showed a trend similar to that of the phase-transition temperature. Thus, Cs+ was concluded to be the most effective of the present monovalent additives for enhancing the thermal stability of γ-Al2O3. Because the order of the phase-transition temperature coincided with that of the formation temperature of β-Al2O3 in these samples, suppression of ionic diffusion in γ-Al2O3 by the amorphous phase containing the added cations must have played an important role in retarding the transition to α-Al2O3. Larger cations suppressed the diffusion reaction more effectively.  相似文献   

13.
Simulataneous additions of SrO and Al2O3 to ZrO2 (12 mol% CeO2) lead to the in situ formation of strontium aluminate (SrO · 6Al2O3) platelets (∼0.5 μm in width and 5 to 10 μm in length) within the Ce-TZP matrix. These platelet-containing Ce-TZP ceramics have the strength (500 to 700 MPa) and hardness (13 to 14 GPa) of Ce-TZP/Al2O3 while maintaining the high toughness (14 to 15 MPa ± m1/2) of Ce-TZP. Optimum room-temperature properties are obtained at SrO/Al2O3 molar ratios between 0.025 and 0.1 for ZrO2 (12 mol% CeO2) with starting Al2O3 contents ranging between 15 and 60 vol%. The role of various toughening mechanisms is discussed for these composite ceramics.  相似文献   

14.
Composites of Al2O3 and Y2O3 partially-stabilized ZrO2 were isostatically hot-pressed using submicrometer powders as the starting material. The addition of Al2O3 resulted in a large increase in bending strength. The average bending strength for a composite containing 20 wt% Al2O3 was 2400 MPa, and its fracture toughness was 17 MN·w−3/2  相似文献   

15.
α-Al2O3-doped (8 mol % Sc2O3)ZrO2 composite solid electrolyte has been investigated in the fabrication of solid-state ceramic gas sensors. The microstructure and electrical conductivity of the composite solid electrolyte have been measured over a range of temperature from 240°C to 596°C. The composite solid electrolyte has been found to exhibit a higher conductivity compared with the commonly used (8 mol% Y2O3)ZrO2 at temperatures above ∼448°C. The sensing characteristics for NO2 detection have been studied in the temperature range of 500–650°C at the low concentration from 10 to 30 ppm and at high concentration from 100 to 500 ppm of NO2. The NO2 sensor was found to respond reproducibly and rapidly to the variations of NO2, concentration, indicating that the composite solid electrolyte has promising application as a solid electrolyte for on-board exhaust gas monitoring.  相似文献   

16.
High-resolution neutron powder diffraction was used to study the residual stresses in Al2O3-ZrO2 (12 mol% CeO2) ceramic composites containing 10, 20, and 40 vol% ZrO2 (CeO2). The diffraction data were analyzed using the Rietveld structure refinement technique. The analysis shows that for all samples, the CeO2-stabilized tetragonal ZrO2 particles are in tension and the Al2O3 matrix is in compression. For both the ZrO2 particles and the Al2O3 matrix, the average lattice strains are anisotropic and increase approximately linearly with a decrease in the corresponding phase content. It is shown that these features can be qualitatively understood by taking into consideration the thermal expansion mismatch between the ZrO2 and Al2O3 grains. Also, for all composite samples, the diffraction peaks are broader than the instrumental resolution, indicating that the strains in these samples are inhomogeneous. From an analysis of the refined peak shape parameters, the average root-meansquare strain, which describes the distribution of the inhomogeneous strain field, was determined. Finally, the average residual stresses were evaluated from the experimentally determined average lattice strains and compared with recent results of X-ray measurements on similar composites.  相似文献   

17.
The microstructure of a pressureless sintered (1605°C, 90 min) O'+β' SiAlON ceramic with CeO2 doping has been investigated. It is duplex in nature, consisting of very large, slablike elongated O' grains (20–30 μm long), and a continuous matrix of small rodlike β' grains (< 1.0 μm in length). Many α-Si3N4 inclusions (0.1–0.5 μm in size) were found in the large O' grains. CeO2-doping and its high doping level as well as the high Al2O3 concentration were thought to be the main reasons for accelerating the reaction between the α-Si3N4 and the Si-Al-O-N liquid to precipitate O'–SiAlON. This caused the supergrowth of O' grains. The rapid growth of O' crystals isolated the remnant α–Si3N4 from the reacting liquid, resulting in a delay in the α→β-Si3N4 transformation. The large O' grains and the α-Si3N4 inclusions have a pronounced effect on the strength degradation of O'+β' ceramics.  相似文献   

18.
α-Al2O3 platelet powders were synthesized in molten Na2SO4 flux. The size of α-Al2O3 platelets was significantly reduced when partially decomposed rather than pure Al2(SO4)3 was used as the source of Al2O3; a further reduction in the platelet size was realized through additional seeding with nanosized α-Al2O3 seeds. The addition of microsized α-Al2O3 platelet seeds significantly influenced the platelet morphology of the final powder, as well. The platelet size of the final powder was in direct proportion to the size of the platelet seeds, and was in reverse proportion to the cube root of the platelet seed content.  相似文献   

19.
Aqueous mixtures of zirconium acetate and aluminum nitrate were pyrolyzed and crystallized to form a metastable solid solution, Zr1- x Al x O2− x /2 ( x < 0.57). The initial, metastable phase partitions at higher temperatures to form two metastable phases, viz., t −ZrO2+γ-Al2O3 with a nano-scale microstructure. The microstructural observations associated with the γ- →α-Al2O3 phase transformation in the t -ZrO2 matrix are reported for compositions containing 10, 20, and 40 mol% A12O3. During this phase transformation, the α-Al2O3 grains take the form of a colony of irregular, platelike grains, all with a common crystallographic orientation. The plates contain ZrO2 inclusions and are separated by ZrO2 grains. The volume fraction of A12O3 and the heat treatment conditions influence the final microstructure. At lower volume fractions of A12O3, the colonies coarsen to single, irregular plates, surrounded by polycrystalline ZrO2. Interpenetrating microstructures produced at high volume fractions of A12O3 exhibit very little grain growth for periods up to 24 h at 1400°C.  相似文献   

20.
Refractory Y-α-SiAlON with elongated grain morphology was obtained by utilizing La2O3 as a densification aid, which resulted in excellent room-temperature and high-temperature strength. Room-temperature strength of 1000 MPa was achieved when La2O3 was augmented by adding Y2O3 or removing AlN. With only La2O3, a temperature-independent strength of 800–950 MPa was maintained up to 1100°C, then gradually decreasing by 25% when reaching 1300°C. The R-curve measurements of fracture toughness showed relatively little dependence on microstructure, consistent with a strong interface that suppresses grain boundary decohesion. Compared with other densification aids such as SiO2, Al2O3, Sc2O3, Y2O3, and Lu2O3, a finer microstructure was obtained by using La2O3. High nitrogen content in the residual La–Si–Al–O–N glass in equilibrium with the nitrogen-rich α-SiAlON is suggested to be the cause of these findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号