首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
以空气滤清器盖的体积收缩率为评价指标,采用正交试验法和响应面法对影响装配尺寸的关键因素:熔体温度、模具温度、流动速率、保压时间和保压压力进行注塑工艺的优化。结果表明,正交试验法所得最优注塑工艺为:熔体温度210℃、模具温度50℃、流动速率80 cm3/s、保压时间12 s和保压压力100 MPa,此时塑件的体积收缩率为5.988%;响应面法所得最优注塑工艺为:熔体温度214.91℃、模具温度59.46℃、流动速率80 cm3/s、保压时间12 s和保压压力109.94 MPa,此时塑件的体积收缩率为5.520%;响应面法最优工艺条件下得到的体积收缩率低于正交试验法,并且该方法所得的最优工艺能够生产出满足装配尺寸精度要求的零件。  相似文献   

2.
针对塑件在成型过程中的多指标优化问题,利用注塑仿真软件对塑件进行仿真,预测其翘曲、体积收缩以及缩痕效果,并结合正交试验、极差分析和综合评分方法对注塑工艺参数进行优化。结果证明,当模具温度为50℃,熔体温度为200℃,保压压力为注射压力的120%,冷却时间为15 s,保压时间为20 s,注射时间为3 s时,塑件成型综合质量较好,注射时间对综合评分影响最大。  相似文献   

3.
结合塑件的成型需要,优化并确定了塑件注塑成型的工艺参数为:模温60℃,料温240℃,保压第一段32MPa-10 s;保压第二段25 MPa-6 s,冷却时间23 s。在此基础上,设计了塑件的两板模热流道注塑模具结构,模具中,设计了2个外壁滑块抽芯机构; 2个内壁斜顶抽芯机构,4个圆形顶杆和顶块顶出机构,保证了塑件的自动化注塑生产。综合运用CAE分析,确定了注塑工艺参数及模具结构3D三维辅助设计,保证了模具结构设计的可靠性和高效性,减少了模具生产成本的浪费。  相似文献   

4.
针对壁厚注塑件成型中的收缩现象,分析影响塑件收缩的主要因素,综合运用注塑仿真和正交设计安排合理的试验方案,通过极差分析和方差分析获得1组最优工艺参数组合,并对其进行仿真验证。结果表明,当成型材料为Lustran ABS Elite HH 1827,熔体温度为200℃,模具温度为80℃,保压压力为注射压力的100%,保压时间为15s,冷却时间为25 s,注射时间为3 s时,塑件收缩率最小,熔体温度对塑件收缩变形影响最大。  相似文献   

5.
针对某异型出风罩注塑成型工艺,以聚碳酸酯/丙烯腈-丁二烯-苯乙烯共聚物(PC/ABS)工程塑料合金为填料,运用Moldflow软件对其注塑过程进行模流分析,通过田口实验设计研究了熔体温度、保压时间、保压压力、注射时间和模具温度对塑件收缩率和翘曲变形量的影响,得到它们对塑件收缩率的影响次序为:保压时间>熔体温度>保压压力>注射时间>模具温度,对翘曲变形量的影响次序为:保压压力>注射时间>熔体温度>保压时间>模具温度。基于灰色关联分析,获得了最优组合工艺参数,即:熔体温度280℃、模具温度为65℃、注塑时间2.1 s、保压时间11 s、保压压力21 MPa。优化后的仿真结果表明,塑件的体积收缩率为6.523%、翘曲变形量为0.80 mm,比灰色关联次序中位组合的样本数据分别降低6.9%和15.8%,并获得最大注射压力为20.34 MPa、最大锁模力为3.25×10^5 N,为后期模具的设计和注塑参数设定提供了有力的参考,缩短了模具开发周期。  相似文献   

6.
《塑料》2015,(5)
以电池后盖为例,利用Moldflow进行注塑CAE分析。首先完成网格划分、创建浇注系统、设定材料和成型工艺参数等分析前处理,并做流动分析。以缩痕深度、体积收缩率为质量目标,模具温度、熔体温度、注射时间、保压压力、保压时间等为工艺参数,进行DOE(Taguchi)试验,结果表明:保压压力影响最大,模具温度、熔体温度次之,保压时间影响最小。优化成型工艺参数后,缩痕指数下降0.82%,体积收缩率下降0.815%,熔接痕减少,塑件质量得到提高。  相似文献   

7.
以医用导管接头为研究对象,对其注塑成型过程在Moldflow软件中进行模拟,通过极差分析得到工艺参数对导管接头体积收缩率的影响趋势和最佳工艺参数,建立以注塑工艺参数为输入量,塑件的体积收缩率为输出量的BP神经网络模型,并进行训练与测试。结合遗传算法对导管接头的注塑工艺参数进行优化,获得最佳工艺参数为:熔体温度226℃、模具温度47℃、注射压力73 MPa、注射时间0.72 s、保压压力19 MPa、保压时间21 s,得到体积收缩率为12.75%,与优化前极差分析所得的13.13%相比,降低了2.89%。将遗传算法优化后的工艺参数组合应用于产品试生产,得到产品表面质量良好,满足企业的设计要求。  相似文献   

8.
为了降低翘曲变形对壁厚塑件质量的影响,利用注塑仿真对塑件进行模拟,并结合正交试验的直观分析和方差分析方法对注塑工艺参数进行优化。结果表明,当模具温度70℃、熔体温度220℃、保压压力为注射压力的120%、冷却时间15s、保压时间30s及注射时间4s时,塑件翘曲量最小,熔体温度对塑件翘曲影响最大,模具温度对翘曲影响最小。  相似文献   

9.
汽车内饰件可由注塑加工获得,但成型过程中塑件产生的翘曲、体积收缩较大,针对该问题,以某汽车薄壁注塑件为例,研究了其注塑工艺参数的优化方法.通过以注塑过程中的最小翘曲和最小体积收缩率为目标函数,以注塑温度、模具温度、注射压力、保压压力、保压时间以及冷却时间等参数作为设计变量,构建了多目标全局优化模型.利用Moldflow...  相似文献   

10.
根据阀座的结构特点,构建了制品的CAE分析模型。利用Moldflow软件对其进行注塑成型数值模拟,以阀座体积收缩率和翘曲变形量为质量评价指标,从影响塑件质量的多个因素中选择模具温度、熔体温度、填充时间、冷却时间、保压时间、保压压力6个因素设计了DOE正交试验,确定出对指标影响较大的4个因素。设计田口正交实验分析这4个因素对指标的影响,优化出注塑工艺参数:熔体温度为270℃,模具温度为70℃,冷却时间为20 s,保压压力为注射压力的90%。对优化结果进行CAE分析验证,效果良好,实现了制品质量指标的多目标优化。利用UG软件设计并制造出阀座注塑模具,生产出合格产品,验证了模拟结果的正确性。  相似文献   

11.
采用Moldflow软件对医用SEBS制品的成型过程进行仿真实验,以体积收缩率为评价指标,研究了工艺参数的改变对制品收缩率的影响。并通过圆柱形试样注塑成型实验,验证模拟了实验中工艺参数对收缩变形规律的影响。结果表明,熔体温度和保压压力的变化对塑件体积收缩率的影响较为显著;通过圆柱形试样的模拟及实验验证,得出了医用瓶塞注塑成型模拟实验的结果具有一定的参考价值,并确定了医用瓶塞的最佳工艺方案组合:熔体温度180℃,注射压力25 Mpa,保压压力20 Mpa,模具温度20℃,保压时间16 s。最小收缩率为1.76%,小于其他工艺条件下的收缩率,说明注塑工艺对SEBS制品的收缩变形具有较大影响。  相似文献   

12.
赵战锋 《塑料》2020,49(4):73-77,86
结合局部厚壁塑件汽车手柄成型困难的问题,运用Moldflow软件对塑件进行了常规注塑成型及有气辅注塑成型,2种成型方案的CAE仿真模拟。常规注塑CAE分析结果表明,塑件成型的主要难点是由于塑件壁厚不均使塑件产生的收缩变形较大,导致塑件的成型尺寸不易控制,其收缩率达7.2%以上。气辅CAE分析结果表明,气辅成型能将塑件的收缩变形率降低至0.33%,此时气辅成型工艺参数为模温50℃,熔体温度230℃,充填时间6 s;注塑保压分3段保压,分别为20 MPa-5 s、20 MPa-2 s及10 MPa-2 s;气辅延时2 s开启,气辅气体注入分3段进行,分别为25 MPa-6 s、15 MPa-3 s、5 MPa-3 s。采用上述优化参数,设计了塑件的一模两腔气辅成型两板模具,在模具中,单腔设置了4个侧滑块,实施侧面抽芯脱模,顶出采用顶针顶出脱模,充气元件采用一种适用于厚壁塑件的型芯面螺纹安装的圆柱形气针,模具结构简单实用,工作可靠性较高,具有设计参考意义。  相似文献   

13.
对汽车手套箱外盖的结构进行整体分析,为满足其复杂结构的要求并解决实际生产中出现的质量缺陷,结合Moldex3D软件,优化了浇注位置,设计了传统水路冷却+隔水板冷却的混合冷却方案。以塑件翘曲变形量为质量目标,采用DOE和信噪比均值分析方法优化注塑工艺参数,最佳工艺参数组合为充填时间2.11s、塑料温度260℃、模具温度30℃、保压时间10 s、保压压力147 MPa、冷却时间15.89 s,其中,对翘曲变形量影响最大的是模具温度。优化后,缩痕指数从0.071%降低至0.041%,降低了42.25%,体积收缩率从11.351%降低至9.005%,降低了20.67%,翘曲变形量从4.446 mm降低至1.521 mm,降低了65.79%,表面质量更加均匀,保压效果更佳,优化效果明显。经过注塑工艺参数优化和实际试生产检验后,产品性能稳定,满足注塑生产要求。  相似文献   

14.
《塑料》2019,(5)
注塑成型是一个具有多变量的复杂成型工艺过程,采用正交试验合理安排注塑工艺过程中进行多因素试验,通过分析各因素对试验结果的影响,确定工艺参数优化组合。对塑料接线盒的翘曲变形进行了优化控制研究。通过正交试验设计,从影响翘曲变形的6个工艺参数的角度分析了对塑件X、Y、Z 3个方向的翘曲变形量的影响,得到塑件翘曲变形最佳的注塑工艺参数组合:模具温度45℃、熔体温度190℃、保压时间35 s、保压压力120%、注射时间1. 5s、冷却时间13 s。通过试模,可知注塑出的塑件质量优良,符合客户要求。通过正交试验进行了塑件注塑质量优化控制,可针对不同试验指标,进行不同的试验因素分析,避免大量无序的试验成本,并且能够有效地解决了问题,可推广应用到其它塑件成型。  相似文献   

15.
基于Moldflow软件,采用正交试验和响应曲面法,对高铁橡胶外风挡注射成型的模拟方案优化设计,并对注射成型工艺参数进行研究。结果表明:模具温度是影响橡胶外风挡顶出时的体积收缩率和缩痕指数的最显著工艺因素,其次分别是熔体(胶料)温度、保压时间、保压压力、注射时间;优化的注射工艺参数为:模具温度185℃,熔体温度65℃,注射时间160 s,保压时间14 s,保压压力110 MPa。在此工艺参数下的橡胶外风挡顶出时的体积收缩率最大值为4.165%,缩痕指数最大值为5.103%。  相似文献   

16.
陈洁琼 《塑料工业》2022,(12):87-93+15
针对新型冠状病毒肺炎(COVID-19)核酸检测卡收缩问题,对制件运用模流软件进行工艺优化,探究注塑成型工艺优化方案。通过对比模具温度、熔体温度、注射时间、保压时间和保压压力,将质量评价指标设置为核酸检测卡的体积收缩率,采用Taguchi正交试验方法选出训练样本,应用多层前馈网络模型(BP)神经网络技术,建立预测模型,并采用改进粒子群算法(PSO)对模型进行优化,以体积收缩率为目标函数,对工艺数据样本进行训练,并进行预测,得到最优体积收缩率为3.864%,其对应的参数为模具温度81℃,熔体温度200℃,注射时间0.6 s,保压时间12 s,保压压力45 MPa,并使用计算机辅助工程(CAE)软件对预测出的体积收缩率的工艺参数进行模拟验证,得到体积收缩率为3.786%,误差仅为2.06%,与优化前(8.954%)相比降低57.72%。并通过试模得到试件外观质量较好,无明显翘曲变形缺陷,经检测试件最大翘曲变形量小于0.15 mm,满足生产要求。表明此改进PSO-BP模型预测塑件的体积收缩率准确精度较高,有一定的生产应用价值。  相似文献   

17.
以汽车前风窗玻璃除霜格栅为研究对象,采用20%滑石粉填充聚丙烯(PP+20%Talc),并借助Moldex3D模流分析软件进行注塑成型模拟。根据分析结果,优化产品成型质量,以解决体积收缩率和凹痕位移等缺陷。采用正交试验法,以充填时间、熔体温度、模具温度、保压压力和保压时间为试验因素,并基于灰色关联分析对注塑成型工艺参数进行了优化。结果表明:各工艺参数对灰色关联度的影响程度排序为:熔体温度>模具温度>充填时间>保压时间>保压压力。最佳工艺参数组合为A2B1C2D3E4。将最佳工艺参数进行试模验证,与优化前相比,体积收缩率改善了6.55%,凹痕位移改善了13.50%。因此,灰色关联分析可以实现注塑成型质量多目标优化,提高了塑件成型质量和试模效率。  相似文献   

18.
以某杯形塑件为例,设计了随形冷却水道模具。在Moldflow软件模拟注塑成型过程的基础上,利用正交试验法分析了熔体温度、注射压力、保压压力和保压时间等工艺参数对制品成型周期的影响。通过遗传算法和Moldflow获得的最佳注塑工艺参数为熔体温度180℃,注射压力22 MPa,保压压力16 MPa,保压时间8 s,成型周期14. 11 s。在最佳工艺参数组合下进行注塑成型试验,平均注塑成型周期为14. 19 s。结果表明,模拟结果和试验结果之间相接近。将数值模拟和遗传算法相结合,可以有效提高运算速度和优化效率。  相似文献   

19.
《塑料科技》2017,(7):81-86
以某一电工仪表外壳为研究对象,模具温度、熔体温度、充填时间和保压压力4个注塑工艺参数为优化目标,制品残余应力和体积收缩率为试验目标函数,采用响应面法(RSM)进行试验设计。所得最优工艺参数优化组合为:模具温度80℃、熔体温度285℃、充填时间1.8 s、保压压力89.18 MPa。经Moldflow模拟,得到最大残余应力与最大体积收缩率分别为54.83 MPa和3.395 4%,这表明响应面模型对工艺参数具有很好的优化效果。以此工艺参数组合为基础,进一步对保压曲线进行优化,得到了近乎最小的残余应力和体积收缩率,从而保证了产品质量,提高了生产效率。  相似文献   

20.
针对车用快插接头壳体在注射成型过程中易发生凹陷现象,结合模具温度、熔体温度、保压压力、保压时间和冷却时间5个注塑工艺参数,设计了正交试验,并采用灰色关联模型分析了各工艺参数对制品质量的影响程度,得出熔体温度对其影响最大,保压压力次之,冷却时间的影响最小。同时,运用极差分析法对快插接头壳体注塑工艺参数进行了优化,得到了优化的参数组合,且在该组合参数条件下,比原始参数组合下的塑件体积收缩率减少了9.75%。最后,通过实际加工验证,在优化后的工艺参数组合下,测得的塑件重量更接近于理论值,提高了塑件的填充率,进而减少了凹陷现象的发生,提高了塑件的尺寸精确度,满足了生产和车用的需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号