首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《塑料》2017,(3)
针对某汽车塑件注塑成型时成型末端翘曲量较大导致尺寸变差的问题,结合注塑成型CAE工艺分析后发现,引起产品充填末端翘曲变形大的主要原因为注塑后冷却收缩不均,针对此问题,将CAE仿真分析和RBF神经网络的预测分析相结合,对注塑工艺参数中的保压工艺和冷却工艺进行了优化设计,CAE分析方案采用(冷却+填充+保压+翘曲),RBF神经网络采用聚类法和梯度算法,应用改善翘曲的L_(27)(38)设计试验方案进行神经网络训练和检验,应用混合正交法(L_(36)(2*6 3*2))进行二次水平密化优选参数,通过优化,找到了改善翘曲的注塑工艺方案,优化的注塑工艺方案能较好的指导产品的批量生产,对其它同类注塑产品的生产有较好的实践参考意义。  相似文献   

2.
利用Moldflow软件对某厚壁塑料制件的注射成型过程进行分析,选取反映制品收缩与翘曲的多个评价指标,结合正交实验法,优化充填时间、熔体温度、保压时间、保压压力、冷却时间等工艺参数,通过均值分析与极差分析研究各因素对各评价指标的影响,并通过综合评分法得到一组最佳的工艺参数。结果表明,增加保压时间与保压压力能减小产品的收缩和翘曲,且得出的最佳工艺组合为注射时间为2.5 s,熔体温度为280 ℃,保压时间为130 s,保压压力为110 MPa,冷却时间为40 s,该工艺下产品的质量疏松度、体积收缩率、平面误差、翘曲分别降低了6.66 %、7.90 %、12.5 %、20.83 %,产品整体成型品质得到有效提高。  相似文献   

3.
针对除霜格栅塑件注塑后由于气孔较多而引起的开裂、凹陷等问题,对气孔产生的成因进行了分析。在排除材料、模具影响因素后,针对注塑成型工艺因素中的注塑速度和注塑压力对气孔问题产生的影响,在基于CAE仿真分析的基础上,将注塑速度和注塑压力转化成相应的螺杆转速控制因素,结合正交试验法对控制因素进行分层,通过BP神经网络构建控制因素与气孔数量的非线性控制关系,通过BP神经网络的预测作用,寻优出气孔最少的控制因素水平组合,并将之反馈于CAE仿真进行验证计算,检验结果表明,所寻优出的工艺参数水平组合能将气孔数量控制在较低的数量上。通过上述寻优,找到了改善塑件气孔的注塑工艺方案,对BP神经网络应用于注塑成型的优化具有很好的参考价值。  相似文献   

4.
塑壳断路器一般通过注塑成型工艺制得。在注塑成型过程中,模具温度、熔体温度、保压压力以及保压时间均对制件的翘曲变形产生一定的影响。以模具温度、熔体温度、保压压力以及冷却时间作为研究参数,以翘曲变形量作为研究目标,采用最优拉丁超立方抽样法抽取合适的样本,建立RBF神经网络模型,结合遗传算法对制件的翘曲变形量进行优化,得到最佳的成型工艺参数组合。结果表明:四个因素的影响程度大小为模具温度>冷却时间>保压压力>熔体温度。当模具温度为50℃、熔体温度为250℃、保压压力为60 MPa以及冷却时间为10 s时,制件的翘曲变形量最小为2.307 7 mm,相较未优化前降低1.294 2 mm,制件成型质量得到明显改善。  相似文献   

5.
散热器外壳是电子产品散热器的主要零件之一,由于壁薄,在注塑成型中经常出现壁厚不均、翘曲变形和熔接痕等缺陷。针对该问题,以熔体温度、模具温度、冷却时间、注射压力、注射时间、保压压力和保压时间7个工艺参数为输入量,注塑件的翘曲量作为输出量,建立RBF神经网络模型;利用均匀试验所得的数据作为样本对神经网络进行训练和测试,得到注塑工艺参数与塑件翘曲变形量之间的非线性映射关系。结合遗传算法对工艺参数进行优化,获得最佳的工艺参数为:熔体温度234. 4℃、模具温度31. 5℃、冷却时间23. 8 s、注射压力128. 3 MPa、注射时间4. 7 s、保压压力93. 0 MPa、保压时间14. 1 s,获得预测的最小翘曲变形值为0. 331 875 mm,并使用优化后的工艺参数进行试验。试验结果表明,优化后产品的最大翘曲变形量降低至0. 318 9 mm,与优化前均匀试验所得的0. 378 1 mm相比,得到了明显的改善,降低了15. 7%。  相似文献   

6.
以某汽车贯穿灯LOGO塑件为研究对象,通过正交试验、计算机辅助工程(CAE)软件和径向基函数(RBF)神经网络对注塑工艺参数进行优化,并对优化结果进行生产验证,得到了满足质量要求的产品。  相似文献   

7.
运用模具CAE软件对所选塑料制品进行填充、冷却、翘曲仿真模拟,利用正交试验设计的方法分析得到工艺参数的最优组合,为模具的制作和注塑生产工艺的设计提供试验依据.  相似文献   

8.
马春文 《塑料科技》2020,48(2):112-119
以某汽车塑件为例,针对其结构及分型复杂、注塑难等问题,基于DOE实验和CAE分析对其注塑所需工艺参数进行了仿真和优化。通过浇口位置和数量的优化,获得了理想的浇口设置;通过浇注系统的优化及成型窗口分析,获得了合理的流动分析工艺参数;对流动分析工艺参数进行正交试验优化,找出了产品注塑存在的潜在缺陷问题,经进一步对针阀控制进行寻优,解决了熔接线过长过多、充填不平衡、气孔较多等问题;通过翘曲和冷却分析的优化,最终获得了产品注塑成型所需的合理工艺参数,设计了一副结构合理的注塑模具,提高了模具生产效率。  相似文献   

9.
李瑞娟  梁德坚 《塑料》2020,49(1):114-118,133
针对塑件翘曲变形过大而导致塑件注塑失效的问题,通过运用CAE分析得出了影响翘曲变形过大的主要因素为收缩不均;采用正交试验方法获得了初步优化后参数,为Tθ(230℃)Ts(65℃)PI(70 MPa)ti(3.5 s)Ph1(60 MPa)th1(10 s)Ph1(75 MPa)th1(12 s)tc(6 s),对应的翘曲值为5.53 mm。在此基础上,再次运用GSO算法对改进的T-S模糊神经网络进行预测,得到了进一步优化的翘曲值,为3.49 mm,对应优化后的工艺参数为Tθ(230℃)Ts(68℃)PI(70 MPa)ti(4 s)Ph1(65 MPa)th1(8 s)Ph1(75 MPa)th1(14 s)tc(4 s),将优化后的工艺参数应用于实际注塑后,塑件的实效问题得到了有效解决,具有较强的实践参考价值。  相似文献   

10.
本研究提出了一种测量翘曲变形的方法,其中翘曲变形由翘曲度和旋转特征来表征。基于注塑成型CAE模拟,建立了翘曲度的估算公式。通过实例验证了该方法的有效性。  相似文献   

11.
以汽车内饰中立柱本体注射成型为例,基于Moldflow中CAE分析基础上,对塑件注塑所需的成型工艺参数进行了仿真,并分析了塑件翘曲成因,给出了翘曲改善优化目标。结合注塑工艺规律,借助于Tugachi正交试验法、BP神经网络遗传算法、Matlab数值分析对塑件注射成型工艺参数协同进行优化,并对优化结果进行了CAE比对验证。结果表明:神经网络预测推荐的工艺参数能有效将翘曲结果控制在质量误差范围内,提出的优化设计方法能有效降低模具试模成本,改善塑件成型质量。  相似文献   

12.
袁根华 《塑料科技》2013,41(6):67-71
借助于CAE的Moldflow软件,对灯罩制件二腔对称方向布局的浇注系统进行了填充分析;根据成型制件最小变形率,选择了成型材料,通过正交试验方法,对模具温度、熔体温度、注射压力和保压时间等工艺参数进行了选择;并调整优化了保压曲线。  相似文献   

13.
于智宏 《塑料科技》2013,41(5):87-89
利用Moldflow软件对冰箱台面框塑件翘曲变形受注塑成型工艺参数的影响规律进行分析,并结合实例,推断出翘曲等工艺缺陷在实际生产前均可以根据模拟分析结果,预先合理选择成型工艺参数来获得改进或消除,从而改善产品质量,降低生产成本。  相似文献   

14.
《塑料》2017,(3)
以汽车显示仪框的注塑成型为例,构建了该汽车塑件两种浇注方案的CAE分析模型,得到了最佳浇注方案,运用Moldflow软件对塑件的注塑成型工艺参数进行了仿真,并对塑件注塑过程中的翘曲、熔接痕、气穴等缺陷成因进行了分析,给出了质量改善优化目标,最后提出了一种新的结合Tugachi试验法、BP神经网络预测的注塑成型工艺寻优方法,并对寻优结果进行了CAE模流分析验证。结果表明:神经网络预测结果与CAE模流分析结果相近,运用Tugachi正交试验分析、BP神经网络、CAE模流分析相结合的方法,能获得较佳的注塑成型工艺参数,使汽车塑件的注塑质量得到明显改善。  相似文献   

15.
《塑料》2015,(5)
以电池后盖为例,利用Moldflow进行注塑CAE分析。首先完成网格划分、创建浇注系统、设定材料和成型工艺参数等分析前处理,并做流动分析。以缩痕深度、体积收缩率为质量目标,模具温度、熔体温度、注射时间、保压压力、保压时间等为工艺参数,进行DOE(Taguchi)试验,结果表明:保压压力影响最大,模具温度、熔体温度次之,保压时间影响最小。优化成型工艺参数后,缩痕指数下降0.82%,体积收缩率下降0.815%,熔接痕减少,塑件质量得到提高。  相似文献   

16.
基于神经网络的注塑成型工艺优化   总被引:11,自引:1,他引:11  
介绍了一种基于CAE把Taguchi实验设计方法和神经网络结合使用的注塑成型工艺优化方法,并通过一个简单的实例对该方法的可行性进行了验证。结果表明:神经网络结合Taguchi实验设计方法的优化算法,可以对注射成型过程中的注射压力最大值进行优化和预测;在进行最少次实验的结果上给出最佳实验因素水平组合,确定出最佳实验条件,并将实验因素对实验目标的影响大小排序,由此获得较重要的实验因素,从而进行注塑成型工艺优化及控制。  相似文献   

17.
针对汽车进气格栅产品结构复杂、注塑质量难以保证的问题,采用CAE仿真分析技术对其浇注系统设计进行了改进,改进后的浇注系统采用热流道嘴多点浇注系统,各热流道嘴采用针阀进行时序控制。通过运用神经网络寻优最佳注塑工艺参数、热流道嘴时序开启时间参数,获得了较好的工艺参考参数,解决了产品熔接线和翘曲变形的质量问题,缩短了产品成型周期。实践表明,采用CAE和神经网络分析优化后的产品注塑质量合格,满足了塑料制品成型的高效、精益化生产的需求。  相似文献   

18.
以鼠标壳为实例,利用正交试验数据得到训练样本。以减小翘曲变形量为目标,运用竞争型神经网络的预测功能,实现注塑成型工艺参数控制。为进一步提高注塑成型质量,采用遗传算法完成工艺参数的优化,并得到最优解。最后,进行相关实验验证。结果表明:优化后,塑件翘曲变形量降低了23.67%,实验结果和预测结果基本吻合,在一定程度上提高了塑件的成型质量。  相似文献   

19.
应用CAD技术结合CAE分析软件进行外壳注塑件的模具设计。创新设计了分型面、浇注系统和侧向抽芯机构,优化了冷却系统,使模具机构和模具分模过程简化,塑件质量得到改善。实践证明:CAD、CAE技术的结合,可以有效提高模具设计质量,缩短模具开发周期,降低开发成本。  相似文献   

20.
以激光器支架为例,运用Moldflow软件进行模流分析,并设置了正交试验,以得到各因素水平的最佳组合,从而减小翘曲变形量,提高塑件质量,使其达到装配要求。然后根据所得数据建立了BP神经网络预测模型,再利用测试样本验证模型的准确性,结果发现仿真值与预测值的误差均在±3%以内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号