首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国食品添加剂》2019,(12):160-170
多孔淀粉(PS)是一种新型的功能多样的生物材料,在医药与食品行业,已经得到了广泛的应用。本研究旨在开发一种新型多孔木薯淀粉(TPS),以木薯淀粉为原料,在α-淀粉酶作用下,经由微波超声波辅助、离心等操作制备多孔木薯淀粉。以吸油率为指标,研究微波功率、超声波功率、时间、温度、pH、加酶量等因素对多孔木薯淀粉成孔情况的影响。可以通过扫描电子显微镜观察其表面的成孔情况和利用XRD观察峰型变化。结果表明:(1)微波超声波辅助得到的多孔木薯淀粉的吸油率和吸附性较好。经由微波超声波处理过的多孔木薯淀粉较之普通酶解产品提高了32.93%。(2)经过微波超声波处理得到的多孔木薯淀粉,其孔径、孔深及数目较之普通酶解产品有效果更佳。  相似文献   

2.
微波辅助制备多孔淀粉的研究   总被引:1,自引:0,他引:1  
以玉米淀粉为原料酶解制备多孔淀粉,在酶解前、后分别用微波对干淀粉进行处理,以水解率、吸油率、柠檬黄吸附量为指标,探讨了微波功率、微波时间等因素对所得产品成孔情况的影响;并对多孔淀粉颗粒的微观形态、晶体结构和糊化特性进行了分析。结果表明:(1)微波辅助处理制得多孔淀粉的水解率和吸附性较好。酶解前的高功率微波辐射30s使产品的吸油率达到最高,较之普通酶解产品提高了35%,辐射40s使产品的色素吸附量达最高,较普通产品提高了16.5%;酶解后的中功率微波辐射30s使产品的吸油率和色素吸附量较之普通酶解产品分别提高了18%和17%。(2)酶解后微波处理制得的产品成孔性优于酶解前处理,其孔径、孔深及数目较之普通酶解产品有较大改善。微波辅助制备的多孔淀粉基本保持原淀粉的结晶结构,产品结合水的能力和形成凝胶的能力均增强。  相似文献   

3.
以广西特色资源木薯淀粉为原料,微波超声波辅助制备了木薯淀粉纳米颗粒。采用动态光散射技术考察了淀粉乳浓度、微波超声波处理功率、微波超声波处理时间、料醇比(淀粉溶液与乙醇体积比)、淀粉溶液的滴加速率、滴加淀粉溶液的过程中微波超声波功率对纳米颗粒尺寸及多分散系数(PDI)的影响,获得了制备木薯淀粉纳米颗粒的最优条件:淀粉乳浓度20 mg/mL,微波超声波处理功率为24:500 W:W,微波超声波处理时间是50 min,料醇比1:8,淀粉溶液的滴加速率是20 mL/min,滴加淀粉溶液过程中微波超声波功率为24:300 W:W。通过傅里叶红外光谱、场发射扫描电子显微镜、X-射线衍射仪对木薯原淀粉和最优条件下合成的木薯淀粉纳米颗粒进行了表征。研究了淀粉纳米颗粒的溶解度、溶胀度、吸水率、吸油率等理化性质。结果表明,木薯淀粉纳米颗粒球形形貌较好,尺寸分布较均一。晶型由A型变为V型,相对结晶度明显降低。与木薯原淀粉相比,淀粉纳米颗粒的溶解度由0.9%提高到78.3%、溶胀度由4.166%提高到10.86%、吸油率提高了170%、12 h内的吸水率提高了3.1%,分散性实验表明木薯淀粉纳米颗粒在水溶液中的分散性较好。该淀粉纳米颗粒可用于食品色素、香料、调味料、维生素、油脂等产品中,应用价值较高。  相似文献   

4.
超声波辅助酶解制备多孔淀粉的研究   总被引:3,自引:0,他引:3  
以玉米淀粉为原料酶解制备多孔淀粉,在酶解前、中、后分别用超声波处理,以水解率和吸油率为指标,探讨了超声波频率、超声时间、淀粉乳浓度等因素对所得产品成孔情况的影响;同时,用扫描电镜对多孔淀粉颗粒的微观形态进行了分析。结果表明,在酶解中用超声波间歇处理效果最好。在超声功率50%、超声时间30 min、淀粉乳浓度70%的条件下,所得多孔淀粉的水解率和吸油率最高,成孔情况最好,其吸油率比普通多孔淀粉提高56%。电镜微观形态分析显示,多孔淀粉微孔的水解率和吸油率的变化与其孔径、孔深及数目的变化相吻合。  相似文献   

5.
酶法处理和超声波作用对抗酶解淀粉形成的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
本文以木薯淀粉为原料,研究了α-淀粉酶、普鲁兰酶和超声波作用对抗酶解淀粉形成的影响。结果表明,酶作用对抗酶解淀粉形成的最佳条件为:淀粉浓度为5%,耐热α-淀粉酶量为10mL(酶活力为3U/mL),普鲁兰酶量为30mL(酶活力为22.5NPUN/mL),冷却升温次数为2次。得到的产品中抗酶解淀粉含量可达到14.52%。超声波频率为25kHz,作用时间为120s时,产品中抗酶解淀粉含量最高,为19.19%。  相似文献   

6.
多孔淀粉是生淀粉酶在低于淀粉糊化温度下水解各种淀粉形成的一种中空的变性淀粉。作为一种高效、无毒、安全的新型有机吸附剂被广泛用于食品、医药、农业、化妆品、造纸等行业。超声波微波协同组合条件下改进传统酶水解法来制备玉米多孔淀粉。超声波微波协同组合条件下改进传统酶水解法来制备玉米多孔淀粉。采用单因素和L18(37)正交实验,考察温度、时间、超声波功率等对吸油率的影响。结果表明:时间45min,微波功率150W,超声波功率400W,温度56℃,α-淀粉酶加酶量为8U/g,糖化酶与α-淀粉酶配比为6∶1,柠檬酸缓冲液pH为5.4,此时吸油率最高。通过SEM观察,发现多孔淀粉呈蜂窝状,表面孔的数目较多,孔密度均一,孔径不大但孔深适中,同时比表面积增大,颗粒较完整。  相似文献   

7.
葛根淀粉多孔化技术研究   总被引:1,自引:0,他引:1  
用α-淀粉酶作工具酶,以吸水率作为多孔化指标,采用单因素实验和正交实验得出使葛根淀粉多孔化的最佳工艺参数是:在葛根淀粉浓度为20%的条件下,α-淀粉酶用量1%,pH 4.4、温度65℃、酶解5h,所得葛根多孔淀粉的吸水率可达到140%以上.  相似文献   

8.
对干木薯渣进行物理粉碎,再用α-淀粉酶和糖化酶(中温淀粉酶60℃~70℃)、脂肪酶和风味蛋白酶除去木薯渣中的淀粉、脂肪和蛋白质,得到纯净的木薯膳食纤维并用超声波辅助脱色;通过单因素试验得到了木薯渣化学成分去除率和膳食纤维脱色的最佳工艺条件。化学成分去除的最佳工艺条件为:当α-淀粉酶和糖化酶的质量比1∶6,用量为0.6%,酶解pH=7,酶解时间为120 min,酶解温度为60℃时,淀粉去除率最高;当脂肪酶用量0.21%,酶解pH=7,酶解时间90 min,酶解温度为50℃时,脂肪去除率最高;当风味蛋白酶用量0.6%,酶解pH=4,酶解时间150 min,酶解温度为35℃时,蛋白质去除率最好。脱色的最佳试验条件为:当H2O2浓度为10%,漂白时间40 min,超声功率为60 W,漂白温度50℃时,漂白效果最好。  相似文献   

9.
酶法制备多孔玉米淀粉的影响因素研究   总被引:5,自引:1,他引:5  
多孔淀粉是生淀粉酶在低于淀粉糊化温度下水解各种淀粉形成的一种中空的变性淀粉。作为一种高效、无毒、安全的新型有机吸附剂被广泛用于食品、医药、农业、化妆品、造纸等行业。本文以玉米淀粉为原料,采用酶水解法来制备多孔淀粉。以吸水率、吸油率为指标来评价酶的来源、淀粉的预处理条件、酶解条件等因素对多孔淀粉形成的影响。研究结果表明,选择玉米淀粉颗粒的粒度为100目,经过湿热处理后采用复合酶(α-淀粉酶与糖化酶配比为1:3)来制备多孔淀粉。通过正交试验确定酶解最佳工艺条件:酶用量 2.0%,时间20h,温度42℃,pH值4.2,搅拌速率120r·min-1,Ca2+浓度0.15%。  相似文献   

10.
以木薯淀粉为原材料,环氧丙烷为醚化剂,氢氧化钠为催化剂,在微波-超声波辅助条件下制备羟丙基木薯性淀粉。采用紫外可见分光光度计测量羟丙基木薯淀粉取代度,研究了微波功率、超声波功率、反应时间、环氧丙烷用量、淀粉质量浓度、氢氧化钠用量对羟丙基木薯淀粉取代度的影响。通过单因素实验及正交实验获得制备羟丙基木薯淀粉的最佳实验条件,并采用X射线衍射分析(XRD)、场发射扫描电镜(FESEM)对其进行表征。结果表明:最佳制备羟丙基木薯淀粉条件为淀粉质量浓度为20%,环氧丙烷用量为2 m L,反应时间为2.5 min,微波:超声波功率为24W:500 W,氢氧化钠用量为淀粉质量的0.7%;X射线衍射,场发射扫描电镜表明羟丙基木薯淀粉的形态发生部分变化,反应主要发生在无定型区。  相似文献   

11.
以马铃薯淀粉为原料,采用超声波辅助酶解法进行多孔淀粉的中试生产研究。通过测定多孔淀粉的吸油率和得率,对中试生产条件进行了优化。实验结果表明:最佳中试条件为淀粉浆浓度60%,超声时间30min,超声功率600W;α-淀粉酶与糖化酶质量比为1:2,总酶量为4%,α-淀粉酶酶解温度为55℃,pH6.0,水解8h;糖化酶水解温度为50℃,pH4.0,水解14h。生产的多孔淀粉得率为80.60%,吸油率为71.22%。  相似文献   

12.
以微波预糊化籼米淀粉为原料,采用超声波间歇式辅助,异淀粉酶和普鲁兰酶分步脱支酶解制备了RS_3型籼米抗性淀粉。以RS_3产率为考察指标,在单因素实验的基础上,利用响应面法对制备RS_3型籼米抗性淀粉的工艺参数进行了优化。结果表明,在淀粉乳质量分数10%、异淀粉酶酶解温度50℃、异淀粉酶酶解pH5.0、普鲁兰酶酶解温度60℃、普鲁兰酶酶解pH4.5、超声功率70 W条件下,最佳工艺条件为:异淀粉酶添加量16 U/g,异淀粉酶酶解时间3 h,普鲁兰酶添加量8 U/g,普鲁兰酶酶解时间2.2 h,超声时间7 min,超声间歇时间2.3 h。在最佳条件下,RS_3型籼米抗性淀粉产率可达18.19%。  相似文献   

13.
为了制备高吸油率的马铃薯多孔淀粉,分别采用超声波和加热预处理辅助酶法处理马铃薯淀粉,研究超声波条件与加热预处理条件对多孔淀粉吸油率的影响。研究结果表明:超声波法最佳条件为超声时间30 min、超声功率600 W、酶解温度55℃、pH 6.5、酶用量1.5%,所得多孔淀粉的吸油率为71.34%;加热预处理最佳反应条件为淀粉乳质量浓度30 g/100 mL,加热温度50℃,加热时间为15 min,过筛细度80目,酶解条件同超声波法,制备的多孔淀粉吸油率为69.05%。因此,两种前处理方法都可用于制备多孔淀粉,但超声波辅助酶法优于加热预处理辅助酶法。  相似文献   

14.
以木薯淀粉为原料,三氯氧磷为交联剂,糖化酶与α-淀粉酶为复合酶,对交联微孔木薯淀粉的制备及其性能进行了研究.结果表明:交联淀粉乳浓度、交联剂的用量、复合酶用量、缓冲液pH、酶解温度和酶解时间对交联微孔淀粉性能影响较显著.当交联淀粉乳浓度为30%、交联剂用量为80μL、缓冲液pH4.5、复合酶用量2.0%、酶解温度50℃、酶解时间12h时,交联微孔淀粉具有较佳吸水率和吸油能力.通过SEM、XRD和TGA对交联微孔淀粉进行了测定与分析.  相似文献   

15.
以小麦淀粉为原料,抗性淀粉得率为指标,采用超声波-酶法制备小麦RS3型抗性淀粉,在优化的超声波作用条件(淀粉乳浓度15%,超声波功率225W,超声温度50℃,超声作用时间50min)基础上,通过单因素及正交试验确定最佳的酶解工艺:耐高温α-淀粉酶添加量1U/g干淀粉,耐高温α-淀粉酶作用时间20 min,普鲁兰酶添加量10 U/g干淀粉,普鲁兰酶酶解温度50℃,酶解时间7 h。经反复验证,超声波-酶法制备小麦RS3型抗性淀粉得率为13.155%。  相似文献   

16.
超声波辅助淀粉双酶水解技术及其机理   总被引:1,自引:1,他引:0  
为了探索超声波对淀粉液化和糖化酶解过程的影响及其机理,以液化值和葡萄糖当量值(DE)为指标,探讨了超声波功率、超声时间、淀粉乳浓度对淀粉酶解过程中还原糖产率的影响。结果表明:在超声功率100 W,超声时间10 min,淀粉乳浓度20%的条件下,淀粉乳的液化值及DE值从未处理样品的19.89mg/mL、82.06%分别提高到30.67 mg/mL、94.30%。超声波处理,使得淀粉颗粒表面的凹痕和裂痕明显增多,淀粉结晶结构遭到破坏,红外结晶指数下降,淀粉支链结构破坏,直链淀粉含量增加,溶解度提高了246.8%。此外,超声波处理对酶的激活作用使得α-淀粉酶活力提高了15.29%。  相似文献   

17.
机械活化对木薯淀粉与真菌α-淀粉酶糖化效果的影响   总被引:1,自引:0,他引:1  
采用搅拌球磨机对木薯淀粉进行机械活化,将不同活化时间的木薯淀粉在相同条件下与真菌α-淀粉酶进行酶解反应.以葡萄糖值为评价指标。分别考察了机械活化时间、糊化温度、糖化时间、底物(淀粉)浓度、酶用量、糖化温度、以及反应体系pH值等因素对糖化液中还原糖含量的影响。结果表明,机械活化预处理能提高木薯淀粉酶解反应液中的还原糖的含量,说明机械活化能有效地提高木薯淀粉的酶解反应活性,酶解速度加快。  相似文献   

18.
机械活化对木薯淀粉与真菌α-淀粉酶糖化效果的影响   总被引:2,自引:0,他引:2  
采用搅拌球磨机对木薯淀粉进行机械活化,将不同活化时间的木薯淀粉在相同条件下与真菌α-淀粉酶进行酶解反应.以葡萄糖值为评价指标。分别考察了机械活化时间、糊化温度、糖化时间、底物(淀粉)浓度、酶用量、糖化温度、以及反应体系pH值等因素对糖化液中还原糖含量的影响。结果表明,机械活化预处理能提高木薯淀粉酶解反应液中的还原糖的含量,说明机械活化能有效地提高木薯淀粉的酶解反应活性,酶解速度加快。  相似文献   

19.
该文以豆薯淀粉为原料,以吸水率和得率为指标,通过单因素试验优化超声辅助复合酶法(α-淀粉酶∶淀粉葡萄糖苷酶=1∶5,质量比)制备豆薯多孔淀粉的工艺条件。最终确定多孔淀粉的制备条件为淀粉乳浓度0.3 g/mL、加酶量0.10%(质量分数)、酶解温度50℃、酶解时间4.0 h。采用扫描电子显微镜、X-射线衍射分析、差示扫描量热法和比表面积及孔隙分析仪对豆薯多孔淀粉进行理化性质表征。结果表明,多孔淀粉表面出现相对均一的孔隙,且比表面积及孔隙参数均增大。相对于原淀粉,多孔淀粉的结晶度提高了6.05%,但是淀粉晶型仍为A-型。多孔淀粉的吸水率、吸油率和亚甲基蓝吸附量相对于原淀粉分别提高了41.9%、24.1%和93.8%。  相似文献   

20.
目的建立微波辅助技术制备硬脂酸木薯淀粉酯,并对其理化性质进行表征。方法以木薯淀粉为原料,以硬脂酸为酯化剂,以盐酸为催化剂,通过均匀设计实验并经SPSS 10.0软件优化微波法制备硬脂酸木薯淀粉酯的最佳工艺参数。结果硬脂酸木薯淀粉酯的最佳工艺条件如下:淀粉50 g(干基),微波功率450 W,微波辐射时间1.5 min,盐酸加入量6.0 mL,硬脂酸0.5 g,得到的产品取代度为0.01685。结论本研究建立了一种无污染、反应快、能耗低的硬脂酸木薯淀粉酯制备方法,得到的产品取代度较高,溶解度、乳化性和乳化稳定性均优于原淀粉。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号