首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
To improve catalytic performance iron based catalyst, the effects of some metal promoters, especially potassium, copper and other transition metal oxides as well as different supports have been reported. A series of Fe/K/Cu catalysts promoted with magnesium and ceria by precipitation method, followed by impregnation method; keeping Cu and K content same. The catalysts were characterized by XRD, N2 physisorption, TPR and TEM techniques. From XRD, the presence of hematite (Fe2O3) phase was detected in all precipitated iron catalysts and CFe2.5 phase in all used catalysts. TPR results showed that addition of Mg facilitated the reduction of Fe2O3 and decrease in reduction temperature. The catalytic performance was investigated in a fixed-bed reactor at 250 degrees C, 2 MPa pressure and H2/CO molar ratio of 2. Concentration of Mg was found to affect the CO conversion and product distribution. It was found that precipitated iron catalyst Fe/Mg/Cu/K with Mg/Fe ratio of 0.1 showed highest conversion (60.6%) and C5(+) selectivity (92.4%) among all catalysts tested.  相似文献   

2.
The catalytic activity and selectivity of Pd dispersed on 8mol% yttria stabilized zirconia (YSZ) support for the reduction of NO by propene or CO is strongly promoted by alkalis in a wide temperature range 200-500 degrees C. Rate increases by up to one order of magnitude are achievable, accompanied with significant improvement in N(2)-selectivity for the alkali promoted catalysts. The promoting effect of alkalis on both the activity and selectivity can be understood in terms of the effect of alkali promoter on the relative adsorption strengths of reactant species. These achievements could be very useful for the formulation of modern lower cost automotive catalytic converters, capable of controlling automotive emissions more efficiently.  相似文献   

3.
The dehydration of glycerol over nanosize niobium catalysts was conducted in a stainless steel autoclave reactor. The catalysts were prepared by the calcination of niobium oxalate between 200 and 700 degrees C. Catalysts were characterized by N2 Physisorption, XRD and TPD of ammonia to investigate the effect of the calcination temperature and water on catalytic performance, catalysts' structures and acidity. Acrolein was mainly produced about 51-71% with useful by-products such as acetaldehyde and methanol. Amorphous Nb2O5 catalysts calcined at 200-400 degrees C significantly showed higher conversion of glycerol than the crystallized Nb2O5 catalyst calcined at 500-700 degrees C. Also the conversion of glycerol and selectivity of acrolein was increased with increasing the acidity of catalyst, which can be controlled by calcination temperature.  相似文献   

4.
In the present study, the catalytic partial oxidation of methane (CPOM) over various active metals supported on CeO2 (M/CeO2, M = Ir, Ni, Pd, Pt, Rh and Ru) has been investigated. The catalysts were characterized by X-ray diffraction (XRD), BET surface area, H2-temperature programmed reduction (H2-TPR), CO chemisorption and transmission electron microscope (TEM) analysis. Ir/CeO2 catalysts showed higher BET surface area, higher metal dispersion, small active metal nano-particles (approximately 3 nm) than compared to other M/CeO2 catalysts. The catalytic tests were carried out in a fixed R(mix) ratio of 2 (CH4/O2) in a fixed-bed reactor, operating isothermally at atmospheric pressure. From time-on-stream analysis at 700 degrees C for 12 h, a high and stable catalytic activity has been observed for Ir/CeO2 catalysts. TEM analysis of the spent catalysts showed that the decrease in the catalytic activity of Ni/CeO2 and Pd/CeO2 catalysts is due to carbon formation whereas no carbon formation has been observed for Ir/CeO2 catalysts.  相似文献   

5.
Trichloroethylene (TCE) is a volatile and nerve-toxic liquid, which is widely used in many industries as an organic solvent. Without proper treatment, it will be volatilized into the atmosphere easily and hazardous to the human health and the environment. This study tries to prepare granular ZnO/Al(2)O(3) catalyst by a modified oil-drop sol-gel process incorporated the incipient wetness impregnation method and estimates its performance on the catalytic decomposition of TCE. The effects of different preparation and operation conditions are also investigated. Experimental results show that the granular ZnO/Al(2)O(3) catalyst has good catalytic performance on TCE decomposition and the conversion of TCE is 98%. ZnO/Al(2)O(3)(N) catalyst has better performance than ZnO/Al(2)O(3)(O) at high temperature. Five percent of active metal concentration and 550 degrees C calcination temperature are the better and economic preparation conditions, and the optimum operation temperature and space velocity are 450 degrees C and 18,000 h(-1), respectively. The conversions of TCE are similar and all higher than 90% as the oxygen concentration in feed gas is higher than 5%. By Fourier transform infrared spectrography (FT-IR) analyses, the major reaction products in the catalytic decomposition of TCE are HCl and CO(2). The Brunauer-Emmett-Teller (BET) surface areas of catalysts are significantly decreased as the calcination temperature is higher than 550 degrees C due to the sintering of catalyst materials, as well as the reaction temperature is higher than 150 degrees C due to the accumulations of reaction residues on the surfaces of catalysts. These results are also demonstrated by the results of scanning electron micrography (SEM) and energy disperse spectrography (EDS).  相似文献   

6.
Hydrotalcite-like catalysts were synthesized by co-precipitation and then these were promoted by the addition of noble metals, alkaline earth metals and ceria. Reaction tests were conducted using a feed of H2O/C/O2 = 3/1/0.37 at a temperature range from 300 degrees C to 700 degrees C. Catalysts were characterized by XRD, TEM, FESEM, TPR, and BET. Reaction test results confirmed an enhancement of the catalytic activity of the promotor-modified catalysts due to low carbon deposition. Among the alkaline earth metals tested, those with larger atomic number exhibited higher activity at a lower temperature range.  相似文献   

7.
Cu, Mn and Ag nanoparticles are loaded on nanostructured mesoporous CeO2 as catalysts for CO oxidation. The Cu/CeO2 catalyst exhibits an obvious deactivation after the stability test at 95 degrees C for 60 h. This is caused by carbon deposition as confirmed by FTIR spectroscopy, Raman spectroscopy and thermogravimetry-differential scanning calorimetry-mass spectroscopy (TG-DSC-MS) analysis. It is found that the Cu-Mn or Cu-Ag binary metal catalysts supported on the nanostructured CeO2 exhibit much improved activity and stability in CO oxidation. In ease case, carbon deposition is absent in the similar stability test, due to enhanced oxygen adsorption property.  相似文献   

8.
Sun G  Xu A  He Y  Yang M  Du H  Sun C 《Journal of hazardous materials》2008,156(1-3):335-341
Three weight percent ruthenium catalysts were prepared by incipient-wet impregnation of two different zirconium oxides, and characterized by BET, XRD and TPR. Their activity was evaluated in the catalytic wet oxidation (CWO) of N,N-dimethyl formamide (DMF) in an autoclave reactor. Due to a better dispersion, Ru catalyst supported on a high-surface-area zirconia (Ru/ZrO(2)-A) possessed higher catalytic properties. Due to over-oxidation of Ru particles, the catalytic activity of the both catalysts decreased during successive tests. The effect of oxygen partial pressure and reaction temperature on the DMF reactivity in the CWO on Ru/ZrO(2)-A was also investigated. 98.6% of DMF conversion was obtained through hydrothermal decomposition within 300 min at conditions of 200 degrees C and 2.0 MPa of nitrogen pressure. At 240 degrees C and 2.0 MPa of oxygen pressure 98.3% of DMF conversion was obtained within 150 min.  相似文献   

9.
Gold catalysts modified by Fe and Ni and supported on different zeolite matrixes have been studied by TEM, TPR, and catalytic testing. The presence of a metal oxide additive allows stabilizing small gold particles, particularly in the case of Fe. The shape of light-off curves shows two temperature regions of the catalyst activity, a low-temperature range below 250 degrees C and a high-temperature range above 300 degrees C. This situation is explained considering the existence of at least two types of catalytically active sites of gold assigned to gold clusters and gold nanoparticles, respectively, while the ionic state of gold (Au3+) remains inactive. It is shown that interaction of gold with Fe promoter leads to activation of catalysts at low temperature due to a change of electronic state and redox properties of gold. NiO additive cause a similar, but less pronounced effect.  相似文献   

10.
氨选择性催化还原(NH3-SCR)技术需要进一步研发在相对较低温度(<300℃)下具有良好催化活性、高稳定性及环境友好的脱硝催化材料。本工作采用草酸共沉淀法制备Mn-Fe-O催化材料,并对其进行不同含量CeO2修饰,用于低温NH3-SCR脱硝催化反应。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、氮气吸附-脱附、X射线光电子能谱(XPS)、程序升温还原或脱附(H2-TPR、NH3-TPD)等手段对催化剂进行了表征。催化结果表明,在相同反应条件下适量CeO2修饰后的Mn-Fe-O样品比纯Mn-Fe-O表现出更优异的NH3-SCR脱硝催化性能,在80℃时NO转化率在95%以上,且具有较高的N2选择性。CeO2修饰提高了Mn-Fe-O氧化物表面的Fe^3+、Mn^3+和Mn4+含量及表面酸性位点数量,从而有助于NH3的吸附及催化反应的进行,并且Fe^2+/Fe^3+、Mn^2+/Mn^3+/Mn^4+以及Ce^3+/Ce^4+电子对之间的相互氧化还原反应提高了催化剂的氧化还原能力及稳定性。  相似文献   

11.
Gold catalysts supported on Co3O4 were prepared by co-precipitation (CP), deposition-precipitation (DP), and impregnation (IMP) methods. The Au/Co3O4 catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and temperature programmed reduction (TPR) to understand the different activities for CO oxidation with different preparation methods. Gold particles below 5 nm supported on Co3O4 by DP method were found to be more exposed to the surface than those by CP and IMP methods, and this catalyst was highly active and stable in CO oxidation. Finally, catalytic activity of Au/Co3O4 catalyst for CO oxidation was strongly dependent on the gold particle size.  相似文献   

12.
采用浸渍法制备了以工业铜基催化剂C301为基体,含CeO2、ZrO2、La2O3、MnO2、Pr2O3、SrO、V2O5助剂的一系列催化剂,在微型固定床反应器上考察了其对CO2加氢合成甲醇的催化性能及影响,并采用XRD、BET、H2-TPR和CO2-TPD等手段进行了表征。研究结果表明,除助剂Pr2O3外,CeO2、ZrO2、La2O3、MnO2、SrO、V2O5助剂的加入均促进了C301催化剂的CO2加氢合成甲醇活性,其中ZrO2的加入使CO2转化率提高了近5%,甲醇收率提高了近8%。  相似文献   

13.
蒸发自组装30~150 nm单分散SiO2微球制备孔径均一的SiO2模型载体,采用等体积浸渍法制备WO3单层负载WO3-SiO2催化剂并对其进行低温氮吸附、压汞、程序升温氨脱附和扫描电子显微镜等表征,然后进行C2H4-C10H20歧化反应实验。结果表明,在相同的实验条件下,相同孔道结构的球形SiO2模型载体孔径对反应结果有重要的影响。催化剂孔径越大,起始乙烯转化率和丙烯选择性越高,反应失活也越快,即内扩散对C2H4-C10H20歧化反应有明显的影响。  相似文献   

14.
选择负载型铜催化剂为研究对象,以富氢条件下研究CO选择性氧化反应为导向,考察了反应气氛、焙烧温度、CuO含量及Al2O3掺杂对CuO/CeO2催化剂的CO选择性氧化催化性能的影响,并采用TEM表征技术探讨结构与性能的关系。  相似文献   

15.
The storage and reduction of NO and N2O in the presence of excess O2 have been investigated over two mixed oxide catalysts. The catalysts, which were prepared via coprecipitation of solutions of mixed metal nitrates, followed by calcination, were found to have plenty storage capacities for nitrogen oxides. The storage and reduction performances varied with the catalyst composition and the duration of cycle time: the AlCoPd (1/1/0.05) mixed oxide catalyst exhibited higher efficiency for NO, and an AlCoFe (1/1/2) mixed oxide catalyst exhibited higher efficiency for N2O. The adsorptions of NO and N2O onto the mixed oxide catalysts progressed without an oxidation step, and the adsorptivity of NO surpassed that of O2. The mixed oxides showed spinel structures with sizes of 10-100 nm, and with well-developed mesopores that were formed by the evaporation of H2O and CO2 from layered double hydroxide (LDH) precursors. The storage and reduction of lean NOx and N2O over the mixed oxide catalysts were carried out via cyclic operations in a transient mode at 300 degrees C and at space velocities of around 30,000 h(-1). The removal efficiency of the cyclic operations generally increased with reduced adsorption cycle time, and reached 90% for NOx and N2O with the respective catalysts.  相似文献   

16.
Aqueous phase reforming of glycerol over the Pd loaded Ni/Al2O3 catalysts   总被引:1,自引:0,他引:1  
Bifunctional catalysts containing (0.5-1.5 wt%) palladium and 15 wt% of Nickel supported on gamma-Al2O3 were prepared via an impregnation technique and catalysts were characterzed by XRD BET surface area and SEM, respectively. The aqueous phase reforming of glycerol (APR) was conducted over alumina-supported catalysts at different reaction conditions for catalytic activity. Finally, we concluded that the 1.0 wt% Pd 15 wt% Ni/gamma-Al2O3 catalyst evidences higher conversion, hydrogen selectivity, lower alkane selectivity and CO production. This indicate that Pd loaded Ni/gamma-Al2O3 could be a potential catalyst for the APR of glycerol.  相似文献   

17.
A raspberry-structured hybrid nanocatalyst composed of spherical NiCu bimetallic oxide nanoparticle decorated on ceria nanoparticle cluster (NiCuOx@CeO2) was successfully synthesized via a gas-phase evaporation-induced self-assembly approach. Chemical composition and crystalline of the NiCuOx@CeO2 were tunable during the gas-phase synthesis. The NiCuOx@CeO2 demonstrates superior catalytic performance toward methane combustion, showing low light-off temperature (~350 °C), high conversion ratio, high turnover frequency (0.483 s?1 at 400 °C) and sufficiently high 8-h operation stability were achievable by adjusting the composition of the catalysts. The results show that 1Ni0CuOx@CeO2 (i.e., the sample without CuO) demonstrated the highest catalytic activity, implying adsorption and dissociation of CH4 (i.e., preferably on NiO) was rate-determining step. Significant higher activity, especially under a low temperature range (<380 °C), was identified for the hybrid NiCuOx@CeO2 samples under an oxygen-lean condition than in oxygen-rich condition, indicating the addition of CuO promoted redox ability of NiCuOx in the hybrid nanostructure. The stability was shown to be proportional to the ratio of NiO in the catalysts, indicating that increase of NiO amount was beneficial for thermal stability. The prototype study demonstrates the development of bimetallic-based hybrid nanostructured catalysts nanoparticle clusters. The mechanistic understanding developed in this study shows promise for the tuning of the abilities in methane dissociation versus its redox properties to achieve an optimal performance in methane-based energy applications.  相似文献   

18.
Catalytic wet peroxide oxidation of phenol solutions over CuO/CeO2 systems   总被引:1,自引:0,他引:1  
Three 5% CuO/CeO(2) catalysts were synthesized by sol-gel, precipitation and combustion methods, followed by incipient wetness impregnation with copper nitrate. The samples were characterized by XRD, TPR, BET and tested for the catalytic wet peroxide oxidation of a phenol solution (5 g/L). The reaction took place in a batch reactor at atmospheric pressure, in a temperature range of 60-80°C, during 4h. Phenol conversion, H(2)O(2) consumption, pH and chemical oxygen demand were determined. The reaction temperature and the catalyst loading did improve the phenol and the H(2)O(2) conversions. The effect on the selectivity towards complete mineralization was less marked, with levels among 60-70%. Stepwise addition of H(2)O(2) was also tested.  相似文献   

19.
Steam reforming (SR) of glycerol for the production of hydrogen was investigated over the nano-sized Ni-based catalysts. The Ni-based catalysts were prepared by solid phase crystallization and impregnation methods, and characterized by N2 physisorption, CO chemisorption, XRD, SEM, and TEM techniques. The Ni/gamma-Al2O3 catalyst showed higher conversion and H2 selectivity. However, it was slowly deactivated due to the carbon formation on the surface of catalyst and the sintering. It was found that the Ni based hydrotalcite-like catalyst (spc-Ni/MgAl) showed higher catalytic activity to prevent carbon formation than Ni/gamma-Al2O3 catalyst in the SR of glycerol.  相似文献   

20.
Aqueous phase reforming of glycerol over Ni-based catalysts for hydrogen production was carried out at 225 degrees C, 23 bar and LHSV = 4 h(-1). The Ni-based catalyst was prepared by an incipient wetness impregnation method. The catalysts before and after the reaction were characterized by N2 physisorption, CO chemisorption, XRD, TPR, SEM and TEM techniques. It was found that Ni(20 wt%)-Co(3 wt%)/gamma-Al2O3 catalyst showed higher glycerol conversion and hydrogen selectivity than Ni(20 wt%)/gamma-Al2O3 catalyst. There are no major changes in Ni particles after the reaction over Ni-Co/gamma-Al2O3 catalyst. The results suggest that the Ni-Co/gamma-Al2O3 catalyst can be applied to the hydrogen production system using APR of glycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号