首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative study of cottonseed and peanut oils for frying of potato chips was undertaken. Industrial scale frying was conducted for 5 days with cottonseed and 5 days with peanut oil and frying oils and chips were sampled twice a day. Frying oils and oils extracted from stored chips were analyzed for ultraviolet absorption (A232 and A268), peroxide and acid values. Tocopherol and tertiary butylhydroquinone levels were determined by high performance liquid chromatography. Chips stored at room temperature for 12 weeks were organoleptically evaluated. During the first 20 hr frying the A232, free acid and peroxide values of cottonseed oil increased rapidly, exceeding that of peanut oil, which increased moderately. For both oils, constant values were attained during the next 80 hr period, followed by moderate increases during the last 23 hr. Peanut frying oil lost 55% of its tocopherols and 54% of its tertiary butylhydroquinone during frying (103 hr), whereas cottonseed frying oil retained these compounds at the original levels. Tocopherols were also better retained in chips fried in cottonseed oil than in peanut oil. The fatty acid patterns of frying oils and oils extracted from chips did not show significant changes due to frying and storage, respectively. These results, therefore, suggest that cottonseed oil is sufficiently stable to be used as a substitute for peanut oil in deep frying.  相似文献   

2.
The major fatty acids of peanut oil acylglycerols are palmitic (C16:0), oleic (C18:1), and linoleic (C18:2) acids, and only a trace amount of linolenic fatty acid (C18:3) is present. Thus they have a very convenient oxidative stability and have been considered premium cooking and frying oils. This paper provides information about compositional data of peanut oil taking into account major (triacylglycerols and their fatty acids) and minor (free fatty acids, diacylglycerols, phospholipids, sterols, tocopherols, tocotrienols, triterpenic and aliphatic alcohols, waxes, pigments, phenolic compounds, volatiles, and metals) compounds. Moreover, the influence of genotype, seed maturity, climatic conditions, and growth location on peanut oil chemical composition is considered in the present report. In addition, peanut oils from wild species found in South America as well as from peanut lines developed through conventional breeding are also compared.  相似文献   

3.
The main objective of this study was to determine the effect of different frying oils and frying methods on the formation of trans fatty acids and the oxidative stability of oils. Sunflower, canola and commercial frying oils, the most commonly used oils for frying potatoes in the fast food industry, were used as the frying medium. The value for total polar compounds was highest when commercial frying oil was used in the microwave oven (22.5 ± 1.1). The peroxide value, as an indicator of oil oxidation, was lowest for microwave oven frying (2.53 ± 0.03). The K232 and K270 values were 0.41 ± 0.04 and 0.18 ± 0.02, respectively, for commercial frying oil in the microwave oven. The lowest free fatty acid content was recorded for the commercial frying oil used in the deep‐fat fryer at 190 °C. The highest iodine value was measured for sunflower oil used in the deep‐fat fryer (148.14 ± 0.07), indicating a greater degree of unsaturation. The lowest trans fatty acid value was recorded for sunflower oil in the microwave oven (0.17 ± 0.05), with a higher overall amount of total trans fatty acids observed for oils after frying in the electrical deep‐fat fryer compared to the microwave. Sunflower oil was favourable for both frying methods in terms of the trans fatty acid content.  相似文献   

4.
The ability of selected phenolic acids to improve the frying performance of canola oil was evaluated in a frying test. The frying performance of the oil was assessed by analysis of total polar components (TPC), level of 4‐hydroxynonenal (HNE), and the rate of formation of volatile carbonyl compounds (VCC). All the tested phenolic acids; ferulic acid (FA), caffeic acid (CA), dihydrocaffeic acid (HCA), gallic acid (GA), and vanillic acid (VA) significantly increased the frying performance of canola oil triacylglycerols (CTG). At the end of the frying test, the amount of TPC in CTG was 22.9 ± 1.0% compared to a maximum of 18.8 ± 0.8% in CTG fortified with the phenolic acids. Similarly, the level of HNE was reduced by up to 45% when it was supplemented with phenolic acids. The results showed that ethyl ferulate (EF) was a better antioxidant than FA under frying conditions; HCA offered a slightly better protection than CA; and the cinnamic acid derivative, FA was better than VA, its benzoic acid analogue. A significant synergy was observed between phenolic acids and the sterol fraction isolated from canola oil. The observed synergy was attributed to the possible formation of steryl phenolates during the frying test. Practical applications: The poor thermal stability of polyunsaturated oils limits their application for prolonged frying. PUFA offer important health benefits and can improve nutritional value of fried foods. Contrary to the commonly applied synthetic antioxidants, the phenolic acids tested in this study often are part of endogenous oil components present in oilseeds and also in some oils, and are known for their positive health benefits. Thus, the simple phenolic acids, especially the cinnamic acid derivatives may be applied as potent antioxidants to protect oils during thermal processes used for food production.  相似文献   

5.
Measurements of degradation in frying oils are mainly based on physico-chemical properties. Total polar compounds (TPC) and free fatty acids (FFA) content in frying oils are used as a guide for discarding used oils. The purpose of this study was to evaluate the efficacy of a sensory method in detecting degradation in soybean oils used in potato chips deep frying. The sensory evaluation of oil samples was determined by a trained panel; after rigorous selection and training steps. Free fatty acid, TPC and Rancimat induction period (IP) were quantified in the same samples. The proposed sensory method was sensitive to small differences in rancidity. The selected and trained sensory panel discarded oil samples with 0.175% FFA as oleic acid, 18.92% TPC, and 0.20 h IP. According to the results achieved in this research sensorial trained panel response is sensitive and accurate in refusing deteriorated frying oils. Besides this, soybean oil can be used for deep frying procedures and safely discarded according to the panel response, although presenting up to 7% linolenic acid.  相似文献   

6.
The rapid development of China's economy has resulted in a dramatic increase in the production and purchase of instant fried food products by consumers. China's food industry has relied largely on the importation of soybean oil and palm oil. Palm oil is widely used by the commercial food industry because of its high oxidative stability and low cost. In contrast, the demand for rapeseed oil and peanut oil has gradually increased but only for domestic frying. In the future, specialized frying oils with improved stability and function will be developed for industrial and domestic frying in China.  相似文献   

7.
Changes in chemical, physical and sensory parameters of high‐oleic rapeseed oil (HORO) (NATREON?) during 72 h of deep‐fat frying of potatoes were compared with those of commonly used frying oils, palm olein (PO), high‐oleic sunflower oil (HOSO) and partially hydrogenated rapeseed oil (PHRO). In addition to the sensory evaluation of the oils and the potatoes, the content of polar compounds, oligomer triacylglycerols and free fatty acids, the oxidative stability by Rancimat, the smoke point and the anisidine value were determined. French fries obtained with HORO, PO and HOSO were still suitable for human consumption after 66 h of deep‐fat frying, while French fries fried in PHRO were inedible after 30 h. During the frying period, none of the oils exceeded the limit for the amount of polar compounds, oligomer triacylglycerols and free fatty acids recommended by the German Society of Fat Science (DGF) as criteria for rejection of used frying oils. After 72 h, the smoke point of all oils was below 150 °C, and the amount of tocopherols was reduced to 5 mg/100 g for PHRO and 15 mg/100 g for HORO and HOSO. Remarkable was the decrease of the oxidative stability of HOSO measured by Rancimat. During frying, the oxidative stability of this oil was reduced from 32 h for the fresh oil to below 1 h after 72 h of frying. Only HORO showed still an oxidative stability of more than 2 h. From the results, it can be concluded that the use of HORO for deep‐fat frying is comparable to other commonly used oils.  相似文献   

8.
The aim of the study was to determine the effect of oil degradation on the content of glycidyl esters (GEs) in oils used for the frying of French fries. As frying media, refined oils such as rapeseed, palm, palm olein and blend were used. French fries were fried for 40 h in oils heated to 180 °C in 30‐min cycles. After every 8 h of frying, fresh oil and samples were analyzed for acid and anisidine values, color, refractive index, fatty acid composition, and content and composition of the polar fraction. GEs were determined by LC–MS. Hydrolysis and polymerization occurred most intensively in palm olein, while oxidation was reported for rapeseed oil. The degradation of oil caused increased changes in the RI of frying oils. Losses of mono‐ and polyunsaturated fatty acids were observed in all samples, with the largest share in blend. The highest content of GE found in fresh oil was in palm olein (25 mg kg?1) and the lowest content of GE was found in rapeseed oil (0.8 mg kg?1). The palm oil, palm olein and blend were dominated by GEs of palmitic and oleic acids, while rapeseed oil was dominated by GE of oleic acid. With increasing frying time, the content of GEs decreased with losses from 47 % in rapeseed oil to 78 % in palm oil after finishing frying.  相似文献   

9.
A table oil or a salad and cooking oil must serve both as an oil for salad dressings and for cooking potatoes in a deep-fat fryer. Blends of peanut and unhydrogenated soybean oil that have been treated with a metal inactivating agent such as citric acid were scored fairly high by a research taste panel after aging for 4 or 8 days at 60 C. Heating the samples to frying temperature resulted in significantly higher room odor scores for peanut oil than for the blends. Blends of hydrogenated or hydrogenated-winterized soybean oil with peanut oil were generally scored about equal to peanut oil in room odor tests. Potatoes fried in these oils were generally given comparable and not significantly different scores. Presented at AOCS Meeting, Houston, May 1971. Northern Marketing and Nutrition Research Division, ARS, USDA.  相似文献   

10.
Canola and soybean oils both regular and with modified fatty acid compositions by genetic modifications and hydrogenation were compared for frying performance. The frying was conducted at 185 ± 5 °C for up to 12 days where French fries, battered chicken and fish sticks were fried in succession. Modified canola oils, with reduced levels of linolenic acid, accumulated significantly lower amounts of polar components compared to the other tested oils. Canola oils generally displayed lower amounts of oligomers in their polar fraction. Higher rates of free fatty acids formation were observed for the hydrogenated oils compared to the other oils, with canola frying shortening showing the highest amount at the end of the frying period. The half-life of tocopherols for both regular and modified soybean oils was 1–2 days compared to 6 days observed for high-oleic low-linolenic canola oil. The highest anisidine values were observed for soybean oil with the maximum reached on the 10th day of frying. Canola and soybean frying shortenings exhibited a faster rate of color formation at any of the frying times. The high-oleic low-linolenic canola oil exhibited the greatest frying stability as assessed by polar components, oligomers and non-volatile carbonyl components formation. Moreover, food fried in the high-oleic low-linolenic canola oil obtained the best scores in the sensory acceptance assessment.  相似文献   

11.
12.
Deep fat frying is a method of food preparation which has been popular for quite a number of years. During deep frying, the quality of oil and the finished product decreases as the result of heat treatment of the oil exposed to air at high temperature. Application of heat by microwave as an alternative to the conventional method of frying has become popular in recent years. In this research, the effects of microwave frying on the changes in the quality indices of used oil have been investigated. To achieve this, potato slices were fried in both frying and sunflower oils by application of medium power microwave (550 W) for 20 min, three times a day, for five consecutive days, and oils were sampled for analysis. The results obtained from the chemical tests demonstrated that used frying oil had lower polar compounds, a higher induction period, and more saturated fatty acids than sunflower oil. The interesting point observed was that peroxides formed as the result of oxidation chain reactions were not broken down and were built up due to the lower temperature and shorter period of frying. Therefore microwave frying might be considered as a suitable alternative to the conventional frying due to less degradation of the oil and consequently a lower production of artifacts.  相似文献   

13.
Nineteen different samples of oils and fats have been examined for their component acids and composition by gas-liquid chromatography. Under programmed-temperature operations, the temperatures at which different components start to elute bear a straight-line relationship with their respective carbon numbers. Chromatograms, under programmed-temperature conditions, of methyl esters from such oils as coconut, groundnut, mustard, etc., are used for identifying the components of an unknown oil by comparing its chromatogram taken under nearly identical conditions. For confirmatory identifications, such plots as logarithm of retention times versus carbon numbers for saturated acids (14:0 to 24:0), monoenoic acids (14:1 to 24:1), and dienoic acids (18:2 to 24:2), under isothermal conditions, have also been used. Some new fatty acids, noted for the first time in traditional oils, are 15:0 in cottonseed oil, 20:1 in sesame oil, 22:0 in soybean oil, and 24:2 in mustard oil. Odd-carbon chain acids from 11∶0 to 23:0 have been observed in such vegetable oils as peanut germ, rice bran, andMesua ferrea. Fatty acid composition by GLC for new samples like peanut lecithin, peanut germ oil,Myristica attenuata, Myristica kanarica, Myristica magnifica, Mesua ferrea, Vateria indica, Schleichera trijuga, and shark-liver stearine are presented. Industrial utilization of these new oils and fats is discussed.  相似文献   

14.
The formation of cis‐9,10‐epoxystearate, trans‐9,10‐epoxystearate, cis‐9,10‐epoxyoleate, cis‐12,13‐epoxyoleate, trans‐9,10‐epoxyoleate, trans‐12,13‐epoxyoleate and the co‐eluting 9‐ and 10‐ketostearates during eight successive pan‐ and deep‐frying sessions of pre‐fried potatoes in five different types of vegetable oils – namely cottonseed oil, sunflower oil, vegetable shortening, palm oil and virgin olive oil – was followed and quantified both in fried oils and in fried potatoes by GC/MS after derivatization to methyl esters. These oxidized fatty acids were present at relatively low concentrations in the fresh oils and pre‐fried potatoes while they increased linearly with frying time, reaching up to 1140.8 µg/g in virgin olive oil (VOO) and 186.9 µg/g in potatoes pan‐fried in VOO after eight pan‐frying sessions, with trans‐9,10‐epoxystearate predominating in all cases. The formation of polymerized triacylglycerols (PTG) was also quantified in frying oils by size exclusion HPLC. Pan‐frying caused higher oxidized fatty acid and PTG formation compared to deep‐frying. Epoxyoleates and PTG concentrations were increased after frying in polyunsaturated oils, while epoxystearate and 9‐ and 10‐ketostearate concentrations were increased after frying in monounsaturated oils. No specific absorption of the oxidized fatty acids by the fried potatoes seems to occur. The dietary intake of oxidized fatty acids and PTG by the consumption of fried potatoes was discussed.  相似文献   

15.
After Swedish researchers reported that heated foods such as potato chips and French fries contain acrylamide, the potential for health damage resulting from the consumption of these foods became a widespread concern. Used frying oils collected from food manufacturing companies were subjected to acrylamide determination using GC/MS-SIM, but the compound was not detected. Thus, we conclude that frying oil used in deep frying would not contaminate foodstuffs with acrylamide and that the recovered oil, much of which is used as a component of animal feeds, would be safe for livestock. Model experiments heating oil at 180 degrees C suggested that no acrylamide was formed either from a mixture of major amino acids exuded from frying foodstuffs and carbonyl compounds generated from oxidized oil, or from oil and ammonia generated from amino acids.  相似文献   

16.
Frying performance of palm oil liquid fractions   总被引:1,自引:1,他引:0  
Palm oil liquid fractions were used as frying media in household and industrial fryers and were compared to standard edible oils and fats, such as soybean, groundnut, sunflower, rapeseed and tallow. The analytical evaluation covered free fatty acids, viscosity, smoke and flame points, oxidized fatty acids, nonelution material (NEM), UV differential spectra, polymers and foam index. These values measure the extent of the oil degradation, i.e., oxidation, hydrolysis, splitting and polymerization. Moreover, they were combined with other analytical procedures (fatty acid composition, keeping qualities such as the time necessary for an oxygen-absorbing sample to reach a -0.5 psi pressure in a closed system) in order to have a large analytical control during the frying processes. The data collected show the suitability of edible oils and fats for frying purposes and indicate that palm oil liquid fractions perform satisfactorily as frying media. They have low degradation and produce fried foods with acceptable keeping qualities. Presented at the ISF/AOCS World Congress, New York, April 1980.  相似文献   

17.
The stabilities of a commercial diacylglycerol‐rich oil (DAG) and a salad oil (TAG) that had been prepared from a mixture of rapeseed and soybean oils were compared while frying potatoes at 180 °C for 3 h. The representative chemical and physical characteristics of the oils were assessed before and after frying, together with the amount of volatile aldehydes in the exhaust of frying. Among the deterioration indications, the carbonyl value, polymer content, and residual polyunsaturated fatty acid content were similar and not significantly different between the TAG and DAG. On the other hand, the characteristics relating to free fatty acids, i.e. the acid value and emission of chemiluminescence at 100 °C, were greater and the smoke and flash points were lower in the DAG than in the TAG. An irritating odor was generated from the DAG after 1 h of frying and got stronger as frying continued. These results suggested that DAG more easily forms free fatty acids under frying conditions than TAG.  相似文献   

18.
Pilot plant-processed samples of soybean and canola (lowerucic acid rapeseed) oil with fatty acid compositions modified by mutation breeding and/or hydrogenation were evaluated for frying stability. Linolenic acid contents were 6.2% for standard soybean oil, 3.7% for low-linolenic soybean oil and 0.4% for the hydrogenated low-linolenic soybean oil. The linolenic acid contents were 10.1% for standard canola oil, 1.7% for canola modified by breeding and 0.8% and 0.6% for oils modified by breeding and hydrogenation. All modified oils had significantly (P<0.05) less room odor intensity after initial heating tests at 190°C than the standard oils, as judged by a sensory panel. Panelists also judged standard oils to have significantly higher intensities for fishy, burnt, rubbery, smoky and acrid odors than the modified oils. Free fatty acids, polar compounds and foam heights during frying were significantly (P<0.05) less in the low-linolenic soy and canola oils than the corresponding unmodified oils after 5 h of frying. The flavor quality of french-fried potatoes was significantly (P<0.05) better for potatoes fried in modified oils than those fried in standard oils. The potatoes fried in standard canola oil were described by the sensory panel as fishy.  相似文献   

19.
Corn oil, peanut oil and randomized peanut oil exhibit different atherogenic potentials; peanut oil being more atherogenic than the other oils. This study was conducted to ascertain if the atherogenicity of these oils was related to their rates of lipolysis. Using both pancreatic lipase and milk lipoprotein lipase (LPL), it was shown that the rated of lipolysis were corn oil>peanut oil>randomized peanut oil. The rates of lipolysis are not related to atherogenicity and may be affected by the distribution of long-chain saturated fatty acids in the component triglycerides.  相似文献   

20.
Refined, bleached, and deodorized soybean oil and vanaspati (partially hydrogenated vegetable oil blend consisting of peanut, cottonseed, nigerseed, palm, rapeseed, mustard, rice bran, soybean, sunflower, corn, safflower, sesame oil, etc., in varying proportions) were used for deep-fat frying potato chips at 170, 180, and 190°C. Refractive index, specific gravity, color, viscosity, saponification value, and free fatty acids of soybean oil increased with frying temperature, whereas the iodine value decreased. The same trend was observed in vanaspati, but less markedly than in soybean oil, indicating a lesser degree of deterioration. Iodine values of soybean oil and vanaspati decreased from their initial values of 129.8 and 74.7 to 96.2 and 59.6, respectively, after 70 h of frying. Polyunsaturated fatty acids decreased in direct proportion to frying time and temperature. Losses were highest in soybean oil with a 79% decrease in trienoic acids and a 60% decrease in dienoic acids. Levels of nonurea adduct-forming esters were proportional to the losses of unsaturated fatty acids. Butylated hydroxyanisole and tertiary butylhydroquinone did not affect deterioration of soybean oil at frying temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号